
Mathematical Logic IV
The Lambda Calculus; by H.P. Barendregt(1984)

Part One: Chapters 1-5

1 Introduction

The λ-calculus (a theory denoted λ) is a type free theory about functions as rules, rather that as graphs {i.e. sets of
n-tuples} in order to stress their computational aspects. This way of thinking about functions (as rules) involves the
basic idea of a function where given certain input the function will, in some sense, generate an output. It seems to
me that this is our intutive notion of a function, where a function is a specified ”way” of getting something (output)
from something (input) as opposed to merely being a set of n-tuples.

A function is a rule of correspondence by which when
anything is given (as argument) another thing (the value
of the function for that argument) may be obtained.
That is, a function is an operation which may be applied
on one thing (the argument) to yield another thing (the
value of the function). 1

Application is a primitive operation in λ-calculus. The function f applied to a is denoted by fa.

Abstraction is a sort of generalization over functions. Let t(≡ t(x)) be an expression possibly containing x. Then
λx.t(x) is the function f that assigns to the argument a the value t(a). That is,

(β) (λx.t(x))a = t(a)

Think of this as something like the following: λx.t(x) is the function that applies a given argument (in this case a)
to the function t only and yields the value t(a) (i.e., It ”substitutes” a in for all of the bound x’s in t).

The theory λ has as terms the set Λ (λ − terms) built up from variables using application and abstraction. The
statements of λ are equations between the terms in Λ. Also λ has as its only mathematical axioms the scheme (β).

2 Conversion

2.1 λ-terms and conversion

The principle object of study in the λ-calculus is the set of lambda terms modulo convertibility***.

2.1.1 (Definition) (i) Lambda terms are words over the following alphabet:

v0, v1, . . . variables
λ abstractor
( , ) parentheses

(ii) The set of λ-terms, Λ, is defined inductively as follows:

(1) x ∈ Λ, x is arbitrary
(2) M ∈ Λ ⇒ (λxM) ∈ Λ, x is arbitrary
(3) M, N ∈ Λ ⇒ (MN) ∈ Λ

2.1.2 (Notation) (i) M, N, L, . . . denote arbitrary λ-terms.
(ii) x, y, z, . . . denote arbitrary variables.
(iii) Outermost parentheses are not written.
(iv) The symbol ≡ denotes syntactic equality (i.e., have the same form).

2.1.3 (more Notation) (i) Let ~x ≡ x1, . . . , xn.

1A. Church The Calculi of Lambda-Conversion-1941-Princeton University Press
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Then λx1 · · ·xn.M ≡ λ~x.M ≡ λx1(λx2(· · · (λxn(M)) . . .))

Let ~N ≡ N1, . . . , Nn.

Then MN1 · · ·Nn ≡ M ~N ≡ (· · · ((MN1)N2) · · ·Nn)
(association to the left)

(iii) ‖ M ‖ is the length of M (i.e., the number of symbols in M).

The substitution operator,

M [x := N ] denotes the result of substituting N for x in M .

The basic eqivalence relation on λ-terms is that of convertibility, which will be generated by axioms.

2.1.4 (Definition) The theory λ has as formulas

M = N

where M,N ∈ Λ and is axiomatized by the following axioms and rules:
(I) (λx.M)N = M [x := N ], (β-conversion)
(II.1) M = M
(II.2) M = N ⇒ N = M
(II.3) M = N,N = L ⇒ M = L
(II.4) M = N ⇒ MZ = NZ
(II.5) M = N ⇒ ZM = ZN
(II.6) M = N ⇒ λx.M = λx.N (rule ξ)

Provability in λ of an equation is denoted by λ ` M = N or just by M = N . If λ ` M = N , then M and
N are called convertible.

Note: λ is logic free: it merely consists of equations. Connectives and quantifiers will be used in the informal
metalanguage discussing about λ.

2.1.6 (Definition) A variable x occurs free in a λ-term M if x is not in the scope of λx; x occurs bound other-
wise. This is the same binding criteria of the usual quanifiers.

2.1.7 (Definition) (i) FV(M) is the set of free variables in M and can be inductively defined as follows:

FV(x) = {x}
FV (λx.M) =FV(M)− {x}
FV(MN) =FV(M)∪ FV(N)

(ii)M is closed or a combinator if FV(M) = ∅.
(iii) Λ0 = {M ∈ Λ | M is closed}
(iv) Λ0(~x) = {M ∈ Λ | FV(M) ⊆ {~x}}
(v) A closure of M ∈ Λ is λ~x.M , where {~x} =FV(M)

– Note that a closure of M depends upon the order of the ~x.

2.1.8 (Defintion) (i) M is subterm of N (denoted by M ⊂ N) if M ∈ Sub(N), where Sub(N), the collection of
subterms of N , is defined inductively as follows:

Sub(x) = {x}
Sub(λx.N1) = Sub(N1) ∪ {λx.N1}
Sub(N1N2) = Sub(N1)∪ Sub(N2) ∪ {N1N2}

Subterms may occur several times and two subterms are disjoint if they have nome common symbol occurances.
A subterm N of M is active if N occurs as (NZ) ⊂ M for some Z; otherwise N is passive.

2.1.9 (Definition) Let F,M ∈ Λ. Then

(i) F 0M ≡ M ;Fn+1M ≡ F (FnM)

2



(ii) FM∼0 ≡ F ;FM∼n+1 ≡ FM∼nM

2.1.11 (Definition) (i) A change of bound variables in M is the replacement of a part λx.N of M by λy.(N [x := y]),
where y does not occur (at all) in N . Since y is a fresh variable there is no threat of messing up the binding properties
of the term.
(ii) M is α-congruent with N (denoted by M ≡a N) if N results from M by a series of changes of bound variables.
2 2.1.12 (Convention) Terms that are α-conguent are identified. So now we can simply write λx.x ≡ λy.y, etc.

2.1.13 (variable Convention) If M1, . . . ,Mn occur in a certain mathematical context (e.g. definition, proof, etc),
then in these terms all bound variables are chosen to be different from the free variables.

2.1.15 (Definition) The result of substituting N for the free occurrences of x in M (denoted by M [x := N ]) is
defined as follows:

x[x := N ] ≡ N

y[x := N ] ≡ y, if x ≡ y/

(λy.M1)[x := N ] ≡ λy.(M1[x := N ])

(M1M2)[x := N ] ≡ (M1[x := N ])(M2[x := N ])

2.1.16 (Substitution Lemma) If x 6= y and x /∈ FV(L), then

M [x := N ][y := L] ≡ M [y := L][x := N [y := L]]

Proof:

2.1.18 (Defintion) (i) A context C[ ] is a term with some holes in it. More formally:

x is a context
[ ] is a context
if C1[ ] and C2[ ] are contexts then so are C1[ ]C2[ ] and λx.C1[ ]

(ii) If C[ ] is a context and M ∈ Λ, then C[M ] denotes the result of placing M in the holes of C[ ]. In this
act free variables in M may become bound by C[M ].

2.1.21 (Defintion) (i) Let ~N ≡ N1, . . . , Nm; ~x ≡ x1, . . . , xn. Then ~N fits in ~x if m = n and the ~x do not occur
in FV( ~N).

(ii) Let ~N ≡ N1, . . . , NM ; ~L ≡ L1, . . . , Ln. Then

~N = ~L if n = m and Ni = Li for 1 ≤ i ≤ n

~N ≡ ~L is defined similarly.

(iii) Let ~N fit in ~x ≡ x1, . . . , xn. Then

M [~x := ~N ] ≡ M [x1 := N1], . . . ,M [xn := Nn], where ~x do not occur in FV( ~N)

(iv) Let M ∈ Λ. As in predicate logic sometimes we write M ≡ M(~x), to indicate substitution:
if M ≡ M(~x) and ~N fits in ~x, then M( ~N) ≡ M [~x := ~N ]

2.1.22 (Lemma) Let ~x ≡ x1, . . . , xn. Then (λ~x.M)~x = M .

2This is similar to Church’s α-conversion which said λx.M = λy.M [x := y]. The difference is that α conversion is a semantic notion
(notice the use of ’=’) and α-congruity is a syntactic notion.
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Proof:

2.1.24 (Combinatory Completeness) Let M ≡ M(~x). Then:

(i)∃F F~x = M(~x)
(ii)∃F ∀ ~N F ( ~N) = M( ~N), where ~N fits in ~x
(iii) In (i), (ii) one can take F ≡ λx.M

2.1.25 (Definition)

I≡ λx.x, K ≡ λxy.x, S≡ λxyz.xz(yz)

2.1.26 (Corollary) For all M,N,L ∈ Λ

(i) IM = M
(ii) KMN = M
(iii) SMNL = ML(NL)

Lambda terms denote processes. Different terms may denote the same process.

2.1.27 (Definition) (i) Extensionality is the following derivation rule:

Mx = Nx ⇒ M = N (ext)

provided that x /∈ FV(MN).

(ii) The theory λ extended by this rule is denoted by λ+ext.

The only difference between λ and λ+ext is that λx.Mx = M is provable in λ+ext and not in λ.

2.1.28 (Definition) Consider the folloing axiom scheme η

λx.Mx = M (η-conversion)

provided that x /∈FV(M). λη is the theory λ extended with η.

2.1.29 (Theorem) The theories λ+ext and λη are equivalent.3

2.1.30 (Definition) (i) An equation is a formula of the form M = N with M, N ∈ Λ; the equation is closed
if M, N ∈ Λ0.

(ii) Let T be a formal theory with equations as formulas. Then T is consistent (denoted by Con(T )) if T does not
prove every closed equation. If T does prove every closed equation then it is inconsistent.

(iii) If T is a set of equations, then λ+T is the theory obtained from λ by adding the equations of T as ax-
ioms. T is called consistent if Con(λ+T ).

2.1.31 (Fact) The theories λ and λη are consistent.4

2.1.32 (Definition) Let M, N ∈ Λ. Then M and N are incompatible (denoted by M#N), if ¬Con(M = N).

3Theorem 2.1.29 is attributed to Curry. Also, the extensional λ-calculus is usually denoted by λη.
4The theory λ extended by a single axiom may become inconsistent.
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Normal Forms
Consider a term like

(λx.xa)I

This term can be computed to yield

Ia

and gives

a

The term a is called a normal form, for it does not ”compute” any further.

2.1.34 (Definition) Let M ∈ Λ.

(i) M is a β-normal form (abbreviated by β-nf or just nf) if M has no subterm (λx.R)L

(ii) M has a β-nf if there exists an N such that N = M and N is a β-nf.5

2.1.35 (Definition) Let M ∈ Λ.

(i) M is a βη-nf if M has no subterm (λx.P )Q or (λx.Rx) with x /∈FV(R).

(ii) M has a βη-nf if

∃N [λη ` M = N and N is a βη-nf.]

2.1.36 (Fact) M has a βη-nf ⇔ M has a β-nf.6

2.1.37 (Fact) (i) If M, N are different β-nf’s, then

λ 0 M = N

(ii) Similarly for βη-nf’s and provability in λη.

2.1.38 (Corollary) The Theories λ and λη are consistent.

2.1.39 (Fact) If M, N are different βη-nf’s, then M#N .7

2.1.40 (Theorem) Suppose M, N have a nf. Then either λη` M = N or λη+M = N is inconsisten.

3 Reduction

There is a certain asymmetry in the defining equation for λ-abstraction. The statement

(λx.x2 + 1)3 = 10

can be interpreted as ”10 is the result of computing (λx.x2 + 1)3” (i.e., 10 is the result of the function applying 3
to the function x2 + 1). This computational aspect will be expressed by writing

(λx.x2 + 1)3 → 10

which reads ”(λx.x2 + 1)3 reduces to 10.”

5If M is a nf, then it is also said to be in nf.
6Curry et al. [1972]
7Böhm [1968]
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The Church-Rosser theorem says that if two terms are convertible, then there is a term to which they both re-
duce. In many cases the inconvertibility of two terms can be proved by showing that they don’t reduce to a common
term.

3.1 Notions of Reduction

3.1.1 (Definition) (i) A binary relation R on Λ is compatible (with the operations) if

(M, M ′) ∈ R ⇒ (ZM, ZM ′) ∈ R, (MZ, M ′Z) ∈ R and (λx.M, λx.M ′) ∈ R

for all M, M ′, Z ∈ Λ.
(ii) An equality (or congruence) relation on Λ is a compatible equivalence relation.
(iii) A reduction relation on Λ is one which is compatible, reflexive, and transitive.

Note: A relation R ⊆ Λ2 is compatible if

(M, M ′) ∈ R ⇒ (C[M ], C[M ′]) ∈ R

for all M, M ′ ∈ Λ and all contexts C[ ], with one hole.

3.1.2 (Definition) (i) A notion of reduction on Λ is a just a binary relation R on Λ.
(ii) If R1, R2 are notions of reduction, then R1R2 is R1∪R2.

3.1.3 (Definition) β = {((λx.M)N, M [x := N ]) | M, N ∈ Λ}.

3.1.4 (Definition) If � is a binary relation on a set X, then the reflexive closure of � (denoted by �=) is the
least relation extending R that is reflexive. The transitive closure (denoted by �∗) and the compatible closure are
defined similarly.

3.1.5 (Defintion) Let R be a notion of reduction on Λ.
(i) Then R induces the binary realations

→R one step R-reduction
�R R-reduction
=R R-equality (also called R-convertibility)

inductively defined as follows. →R is the compatible closure of R:

(1) (M, N) ∈ R ⇒ M →R N
(2) M →R N ⇒ ZM →R ZN
(3) M →R N ⇒ MZ →R NZ
(4) M →R N ⇒ λx.M →R λx.N

�R is the reflexive, transitive closure of →R:

(1) M →R N ⇒ M �R N
(2) M �R M
(3) M �R N, N �R L ⇒ M �R L

=R is the equivalence relation generated by �R:

(1) M �R N ⇒ M =R N
(2) M =R N ⇒ N =R M
(3) M =R N, N =R L ⇒ M =R L

(ii) The basic relations derived from R are pronounced as follows:
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M �R N : M R-reduces to N or N is an R-reduct of M
M →R N : M R-reduces to N in one step
M =R N : M is R-convertible to N

The relations →R, �R, and =R are introduced inductively. Therefore properties about these relations can be
proved inductively.

3.1.6 (Lemma) The relations →R, �R, and =R are all compatible. Therefore, �R is a reduction relation and
=R is an equality relation.
Proof:

3.1.7 (Remarks) By the compatibility of �R it follows (by induction on the structure M) that

N �R N ′ ⇒ M [x := N ] �R M [x := N ′]

(ii) The notion of compatible relation can be generalized directly to any set X with some operations on it. We can
then speak of equality and reduction relations.

(iii) Notions of reduction will be denoted by boldface letters; e.g. β, η, Ω. The derived relations will be writ-
ten using the corresponding lightface symbols; e.g. →β, �β, etc.

For the remainder of the section R is a notion of reduction on Λ.

3.1.8 (Definition) (i) An R-redex is a term M such that (M, N) ∈ R for some term N. In this case N is called an
R-contractum of M .

(ii) A term M is called an R-normal form (R-nf) if M does not contain (as subterm) any R-redex.

(iii) A term N is an R-nf of M (or M has the R-nf N) if N is an R-nf and M =R N .

The process of stepping from a redex to a contractum is called contraction.

3.1.9 (Lemma)

3.1.10 (Corollary)

3.1.11 (Definition) (i) Let � be a binary relation on Λ. Then � satisfies the diamond property (denoted by
�|= ♦) if

∀M, M1, M2 [M � M1 ∧ M � M2 ⇒ ∃M3[M1 � M3 ∧ M2 � M3]]

see figure 3.1 (p. 54)

(iii) A notion of reduction R is said to be Church-Rosser (CR) if �R satisfies the diamond property.

3.1.12 (Theorem)

3.1.13 (Corollary)
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3.1.14 (Definition) A binary relation R on Λ is substitutive if for all M, N, L ∈ Λ and all variables x one has

(M, N) ∈ R ⇒ (M [x := L], N [x := L]) ∈ R

3.1.15 (Proposition)

3.1.16 (Proposition)

3.1.17 (Definition) (i) Let ∆ be a subterm occurrence of M , that is, M ≡ C[∆]. Write

M →∆ R N

if ∆ is an R-redex with contractum ∆′ and N ≡ C[∆′].

(ii) A R-reduction (path) is a finite or infinite sequence

M0 →∆0

R M1 →∆1

R M2 →R . . .

3.1.18 (Conventions) (i) σ, τ, . . . range over reduction paths.

(ii) The reduction path σ in definition 3.1.17(ii) starts with M0. If there is a last term Mn in σ, the σ ends
with Mn. In that case one also says that σ is a reduction path from M0 to Mn. If n = 0, then σ is called
the empty reduction (denoted by ∅ : M0 �R M0). If n 6= 0, then σ is a proper R-reduction (denoted by
(σ :) M0 �R6=∅

Mn.

(iii) Sometimes the ∆0, ∆1 are left out in denoting a reduction path.

(iv) We often write σ : M0 → M1 → . . . to indicate that σ is the path M0 → M1 → . . .

(v) If σ : M0 → . . . → Mn and τ : Mn → Mm, then

σ + τ : M0 → . . . → Mn → . . . → Mm

(vi) If ∆ is an R-redux occurrence in M with contractum ∆′, then (∆) denotes the one step reduction M →∆ R N .
That is,

(∆) : C[∆] →∆ R C[∆′]

(vii) If σ is a R-reduction path, then ‖ σ ‖ is its length (i.e., the number of →R steps in it). Note that
‖ σ ‖∈ N ∪ {∞}.

3.1.20 (Definition) The R(reduction) graph of a term M (denoted by GR(M)) is the set

{N ∈ Λ | M �R N}

directed by →R: if several redexes give rise to M0 →R M1, then that many directed arcs connect M0 to M1 in
GR(M).
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3.1.22 (Definition) Let M ∈ Λ.

(i) M R-strongly normalizes (denoted by R-SN(M)) if there is no infinite R-reduction starting with M .

(ii) M is R-infinite (denoted by R − ∞(M)) if not R-SN(M).

(iii) R is strongly normalizing (SN) if ∀M ∈ Λ R-SN(M).

3.1.23 (Fact)

3.1.24 (Definition) (i) A binary relation � (on a set X) satisfies the weak diamond property if

∀x, x1, x2[x � x1 ∧ x � x2 ⇒ ∃x3[x1 �∗
=

x3 ∧ x2 �∗
=

x3]]

where �∗
=

is the transitive reflexive closure of �.

(ii) A notion of reduction R is weakly Church-Rosser (WRC) if →R satisfies the weak diamond property.

3.1.25 (Proposition)

3.1.26 (Notation) (i) R-NF = {M ∈ Λ | M is in R-nf}, R-NF0 = R-NF ∩ Λ0.

(ii) If X ⊆ Λ, then M ∈R X iff M ′ =R M for some M ′ ∈ X.
In this notation, M ∈β β-NF iff M has a β-nf.

3.1.27 (Definition) (i) M ∈ Λ0 is R-solvable if ∃ ~P ∈ Λ M ~P =R I.

(ii) M ∈ Λ is R-solvable if some closed substitution instance of M is R-solvable.

3.2 Beta Reduction

3.2.1 (Proposition)

3.2.2 (Lemma)

3.2.3 (Definition) Define a binary relation �1 on Λ inductively as follows:

M �1 M

M �1 M ′ ⇒ λx.M �1 λx.M ′

M �1 M ′, N �1 N ′ ⇒ MN �1 M ′N ′
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M �1 M ′, N �1 N ′ ⇒ (λx.M)N �1 M ′[x := N ′]

3.2.4 (Lemma)

3.2.5 (Lemma)

3.2.6 (Lemma)

3.2.7 (Lemma)

3.2.8 (Theorem) The Church-Rosser Theorem (CR)

(i) β is CR.

(ii) M =β N ⇒ ∃Z[M �β Z ∧ N �β Z]

3.2.9 (Corollary)

3.2.10 (Theorem)

3.2.11 (Convention) The notion of reduction β will be used throughout this book. Therefore, to simplify nota-
tion the subscripts will be suppressed. That is

→β, �β, Gβ(M), β-NF, β − ∞(M) and β-solvable

will be denoted by

→, �, G(M), NF, ∞(M) and solvable.

Note: The notation ∈β will NOT be replaced by ∈.

3.3 Eta Reduction

3.3.1 (Definition) (i) η:λx.Mx → M provided x /∈ FV(M); that is η = {(λx.Mx, M) | x /∈ FV(M)}

(ii) βη = β ∪ η
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The point of βη-reduction is that it axiomatizes provable equality in the extensional λ-calculus and it is CR.

3.3.2 (Proposition)

3.3.3 (Proposition)

3.3.4 (Definition) Let �1 and �2 be two binary relations on the set X. Then �1 and �2 commute if

∀x, x1, x2 ∈ X[x �1 x1 ∧ x �2 x2 ⇒ ∃x3[x1 �2 x3 ∧ x2 �1 x3]]

see figure 3.6 (page 64)

Note: �|= ♦ iff � commutes with itself.

3.3.5 (Proposition)

3.3.6 (Lemma)

3.3.7 (Lemma)

3.3.8 (Lemma)

3.3.9 (Theorem)

3.3.10 (Corollary)

3.3.11 (Theorem)

3.3.12 (Proposition)
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4 Theories

4.1 Lambda Theories

Lambda theories are consistent extensions of the λ-calculus that are closed under derivations. They are studied
because of their own interest and because of their application to ordinary λ-conversion.

Remember that a (closed) equation is a formula of the form M=N, with M, N ∈ Λ0. If T is a set of equations,
then the theory λT is obtained by adding to the axioms and rules of the λ-calculus the equations in T as new axioms.

4.1.1 (Definition) Let T be a set of closed equations.
T + is the set of closed equations provable in λ+T .
T is a λ-theory if T is consistent and T + = T .

By corollary 2.1.38 both λ and λη are λ-theories.

4.1.2 (Remarks) (i) Since the rules ξ is in λ, each λ-theory T is closed under ξ and hence
T ` M = N ⇔ T ` λx.M = λx.N .

The ⇐ follows since (λx.M)x = M in T .

(ii) By (i) it follows that it does not matter to resrict ourselves in 4.1.1 to sets of closed equations.

(iii) Clearly Con(T )⇔ λ +T /̀ T = F.

(iv) Each λ-theory is identified with the set of closed equations provable in it. In particular,
λ= {M = N |M, N ∈ Λ0 and λ` M = N}.

4.1.3 (Proposition) Let T be a λ-theory. Then
(i) T ` M = M ′ ⇒ T `C[M ] = C[M ′]
(ii) T M = M ′, T ` N = N ′ ⇒ T ` M [x := N ] = M ′[x := N ′]

Proof: (i) By induction on the structure of C[ ].

(ii) Assume T ` M = M ′. Then by (i) T ` (λx.M)N = λ.M ′)N hence
T ` M [x := N ] = M ′[x := N ′].

If moreover T ` N = N ′, then by (i) T ` M ′[x := N ] = M ′[x := N ′] and we’re done.

4.1.4 (Notation) Let T be a theory.
(i) T ` M = N stands for λ+T ` M = N ; this is also written as M =T N .

(ii) T + M = N stands for (T ∪ {M = N})+.

(iii) T η stands for (λη+T )+.

(iv) If T = (T0)+, then T is said to be axiomatized by T0.

(v) Write x ∈T M if ∀N =T M, x ∈ FV(N).

(vi) M ∈T X if ∃N =T M, N ∈ X.

(vii) 1 ≡ λxy.xy (Church’s numeral 1)

4.1.5 (Lemma) For a λ-theory T one has T η= T + (I = 1).
Proof:

12



Note: An important λ-theory is obtained following the proposal 2.2.14 to identify unsolvable terms.

4.1.6 (Definition) (i) K = {M = N |M, N ∈ Λ0, unsolvable}

(ii) K = K +
0 .

4.1.7 (Definition) Let T be a t λ-theory.
(i) T is r.e. if after coding T is a recursively enumerable set of integers.

(ii) T is sensible if K ⊆ T .

(iii) T is semi sensible (s.s.) if T does not equate a solvable and an unsolvable term.

Note: Both λ and λη are r.e. and s.s. (the latter will be proved in §17.1).

4.1.8 (Lemma) (i) Let K∞ be a fixed point of K. Then I = # K∞.

(ii) (Jacopini [1975]) Let ω3 ≡ λx.xxx and Ω3 ≡ ω3ω3. Then I #IΩ3.

Proof: (i) First note that K∞ = KK∞ =K∞. Hence

I = K∞ ` M = IM = K∞M = K∞ = K∞N = IN = N .

(ii) Note that Ω3 ≡ ω3ω3 = ω3ω3ω3 ≡ Ω3ω3. Hence

I = Ω3 ` I = Ω3 = Ω3ω3 = Iω3 = ω3.

Since I and ω3 are different βη-nf’s, one has by Böhm’s theorem for λI, theorem 10.5.31, that I #Iω3. Hence we’re
done.

4.19 (Corollary) T sensible ⇒ T semi sensible.
Proof:

Rules

The rule of extensionality (ext) and the rule ξ from chapter two. Plus:

4.1.10 (Definition) (i) The ω-rule is
ω : ∀Z ∈ Λ0MZ = NZ ⇒ M = N

(ii) The term rule is
tr : ∀Z ∈ Λ0MZ = NZ ⇒ Mx = Nx, for arbitrary x.

4.1.11 (Definition) Let T be a λ-theory.
(i) T is closed under the ω-rule notation T ` ω if

∀Z ∈ Λ0 T ` MZ = NZ ⇒ T ` M = N

(ii) Similarly one defines T ` R for the other rules. Note that by definition, for every λ-theory T one has T ` ξ

(iii) T is extensional if T ` ext.
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4.1.12 (Lemma) (i) T ` ω ⇔ T ` tr and T ` ext

(ii) T ` ext ⇔ T ` I = 1 ⇔ T = T = T η.
Proof:

4.1.13 (Notation) For a λ-theory mathscrT and a rule R let T + R of T R be

{M = N |M, N ∈ Λ0 and λ +R + T ` M = N}

in the obvious sense.

In general T R does not need to be a λ-theory; corollary 15.3.7 shows that ¬ Con(T η) for some λ-theory T .

4.1.14 (Definition) Let R0 be the rule R restricted to closed terms. E.g. ext is

Fx = F ′x, F, F ′ ∈ Λ0 and x /∈ FV(FF ′) ⇒ F = F ′

4.1.15 (Proposition) Let T be a λ-theory. Then

(i) (Hindley and Longo [1980]) T ` ω0 ⇔ T ` ω

(ii) T ` tr0 ⇔ T ` tr

(iii) T ` ext0 ⇒/ T ` ext.

Proof:

Term Models

Term models consist of the set of closed λ-terms modulo some λ-theory T and reflect the properties of such a theory.

4.1.16 (Definition) (i) A combinatory algebra is a structure

M = 〈X, ·, k, s〉

such that the Card(X) > 1 and kxy = x, sxyz = xz(yz) are valid in M.

Moreover such a structure is extensional if in M

(∀x ax = bx) → a = b

4.1.17 (Definition) Let T be a λ-theory.
(i) The (open) term model of T is the structure

M(T ) = 〈Λ/ =T , ·, [K]T , [S]T 〉

where for M, N ∈ Λ

M =T N ⇔ T ` M = N

[M ]T = {N ∈ Λ|M =T N}
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Λ/ =T = {[M ]T |M ∈ Λ}

[M ]T · [N ]T = [MN ]T

(ii) Similarly one defines the closed term model

M0(T ) = 〈Λ0/ =T , ·,[K]T , [S]T 〉

4.1.18 (Proposition) Let T be a λ-theory. Then

(i) M(T ) and M0(T ) are combinatory algebras.

(ii) T ` ext ⇔ M(T ) is extensional.

(iii) T ` ω ⇔ M0(T ) is extensional.
Proof:

Remark: In general
T ` ext ⇒/ M0(T ) is extensional.

This is so because λη ` ext but not ω.

4.1.19 (Definition)(i) Let T be a λ-theory. Then the canonical map

φT : Λ → M(T ) is defined by φT (M) = [M]T

(ii) If T1, T2 are λ-theories with T1 ⊆ T2, then the canonical map

φT1T2 : M(T1) → M(T2) is defined by φT1T2([M ]T1) = [M ]T2

(iii) Similarly one defines canonical maps

φ0
T : Λ0 → M0(T ) and φ0

T1T2
: M0(T1) → M0(T2)

4.1.20 (Lemma)

Lambda theories are non degenerate congruence relations on M(λ).

Completeness of theories

4.1.22 (Definition) An equational theory T is called Hilbert Post (HP)- complete if for every equation M = N in
the language of T

T ` M = N or T + (M = N) is consistent.

The notion applies to particular λ-theories. HP-complete theories correspond to maximally consistent theories
in first order model theory. Although, if A is a first order structure then Th(A) is maximally consistent. But if M
is, say, a combinatory algebra, then
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Th(M)= {M = N |M � M = N, M, N ∈ Λ0}

is not necessarily complete. For example, Th(M(λ)) =λ and this theory has many proper extensions.

By Zorn’s lemma every λ-theory can be extended to a HP-complete one.

5 Models

INTRODUCTORY STUFF!

5.1 Combinatory Algebras

5.1.1 (Definition) (i) M = (X, ·) is an applicative structure if · is a binary operation on X.

(ii) Such a structure is extensional if for a, b ∈ X one has

(∀x ∈ X a · x = b · x) ⇒ a = b

Notation: (i) As in algebra, a·b is usually written ab. If~b = b1, . . . , bn, then a~b = ab1, . . . , bn = (. . . ((ab1)b2) . . . bn)

(ii) If M = (X, ·) then we write a ∈ M instead of a ∈ X.

5.1.2 (Definition) Let M be an applicative structure

(i) The set of terms over M (denoted by T (M)) is inductively defined as follows

v0, v1, v2, . . . ∈ T (M), (variables)

a ∈ M ⇒ ca ∈ T (M), (constants)

A, B ∈ T (M) ⇒ (AB) ∈ T (M)

Notation: A, B . . . denote arbitrary terms and x, y, . . . arbitrary variables in T (M)

(ii) a valuation in M is a map ρ: variables → M. For a valuation ρ in M the interpretation of A ∈ T (M)
in M under ρ (denoted by (A)M

ρ or (A)ρ or (A)M if M or ρ is clear from the context)
is inductively defined as usual:

(x)M
ρ = ρ(x)

(ca)M
ρ = a

(AB)M
ρ = (A)M

ρ (B)M
ρ

(iii) A = B us true in M under the valuation ρ (denoted by M, ρ � A = B) if (A)M
ρ = (B)M

ρ .

(iv) A = B is true in M (denoted by M � A = B) if M, ρ � A = B for all valuations ρ.

(v) The relation � is also used for first order formulas over M. The definition is as usual.

Remember that when evaluating a formula, the free variables of that formula are dependent on the interpreta-
tion, ρ.
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5.1.3 (Definition) (Due to Curry) An applicative structure M is a combinatory complete if for every A ∈ T (M)
and x1, . . . , xn with FV(A)⊆ {x1, → , xN} one has ion M

∃f ∀x1, . . . , xn = A

Note that an extensional applicative structure is combinatory complete iff for all A ∈ T (M) one has

∃!f ∀~xf~x = A(~x)

5.1.4 (Notation) Intuitive. . .

5.1.5 (Lemma) Let M be an applicative structure and A, A′, B, B′ ∈ T (M) Then

(i) (A[x := B])ρ = (A)ρ(x:=(B)ρ)

(ii) M � A = A′ ∧ B = B′ ⇒ M � A[x := B] = A′[x := B′]
Proof:

5.1.6 (Definition) Let M = (X, ·) be an applicative structure and let φ : Xn → X be a map

(i) φ is representable over M if

∃f ∈ X ∀~a ∈ φ(~a)

(ii) φ is algebraic over M if there is a term A ∈ T (M) with FV(A) ⊆ {x1, . . . , xn} such that

∀~a φ(~a) = (A)ρ(~x:=~a) Note that this is independent of ρ. Why?

Combinatory completeness says that all algebraic functions are representable. The converse is trivial.

5.1.7 (Definition) A combinatory algebra is an applicative structure M = (X, ·, k, s) with k and s defined as
usual.

5.1.8 (Definition) Let M be a combinatory algebra.

(i) Extend T (M) with new constants K and S denoting k and s respectively. Also I = SKK.

(ii)For A = T (M) and a variable x, define λ∗x.A ∈ T (M) inductively as follows

λ∗x.x = I

λ∗x.P = KP , if P does not contain x

λ∗x.PQ = S(λ∗x.P )(λ∗x.Q)

(iii) Let ~x = x1, . . . , xn. Then λ∗~x.A = (λ∗x1 . . . (λ∗xnA) . . .)

5.1.9 (Proposition) Intuitive. . .
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5.1.10 (Theorem) An applicative structure M is combinatory complete iff it can be expanded to a combinatory
algebra (by choosing k, s). Hence every combinatory algebra is combinatory complete. Proof:

5.1.11 (Remarks) Note that a combinatory algebra M = (X, ·, k, s) is nontrivial (i.e., Card(M > 1) iff k 6= s.
Indeed, k = s implies a = s(ki)(ka)z = k(ki)(ka)z = i for all a, so M is trivial. We usually just assume that
what we are dealing with is nontrivial.

5.1.12 (Definition) (i) Let Mi = (Xi, ·i, ki, si), i = 1, 2, be combinatory algebras. Then φ : X1 → X2

is a homomorphism (denoted by φ : M1 → M2) if φ preserves application and k and s, i.e. φ(x ·1 y) =
φ(x) ·2 φ(y), φ(k1) = k2, and φ(s1) = s2.

(ii)M1 → M2 if φ : M1 → M2 for some φ.

(iii) M is embeddable in M2 (denoted by M1 # M2) if φ : M1 → M2 for some injective φ.

M1 is a substructure of M2 (denoted M1 ⊂ M2) with φ the identity.

(iv)M1 is isomorphic to M2 (denoted by M1
∼= M2) if φ : M1 → M2 for some bijective φ.

5.1.13 (Definition) (i) C is the set of terms of combinatory logic, i.e. applicative terms built up with variables
and K, S only.

C0 = {P ∈ C| FV(P ) = ∅}

(ii) Let M be a combinatory algebra. Then

Th(M) = {P = Q|M � P = Q, P, Q ∈ C0)}

5.1.13 (Proposition) Let φ : M1 → M2. Then for P, Q ∈ T (M)

(i) φ(dP c)M1
ρ = dφP cM2

φ◦ρ, where φ(P ) results from P by replacing the constants ca by cφ(a).

(ii)M1 � P = Q ⇒ M2 � φ(P ) = φ(Q), provided P < Q ∈ C0 or φ is surjective.

(iii) Th(M1) ⊆ Th(M2)

(iv) Th(M1) = Th(M2), provided that φ is injective.

Proof:
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5.1.15 (Proposition) Combinatory algebras (except the trivial one) are

(i) never commutative

(ii) never associative

(iii) never finite

(iv) never recursive

Proof:

5.2 Lambda Algebras and Lambda Models

Since in a combinatory algebra A abstraction can be simulated by k and s, it is possible to interpret λ-terms in A.

(Notation) Let C be a set of constants. Λ(C) is the set λ-terms possibly containing constants from C. The
λ-calculus axioms and rules extend in the obvious way to equations M = N with M, N ∈ Λ(C). For these M, N
we still write λ ` M = N . If M is an applicative structure, then Λ(M) is Λ({ca|a ∈ M}).

5.2.1 (Definition) Let M be a combinatory algebra.

(i) Define maps

CL : Λ(M) → T (M)

Λ : T (M) → Λ(M)

Consider the definition in the middle of page 92.

For M, N ∈ Λ(M) one defines

dMcM
ρ = dMCLcM

ρ

M, ρ � M = N ⇔ dMcM
ρ = dNcM

ρ

M � M = N ⇔ M, ρ � M = N for all ρ

If M is a combinatory algebra and a ∈ M, then we write (for example) λx.xa for dλx.cacA.

Also, not all equations provable in λ-calculus are true in every combinatory algebra. For example, if M is the
term model of CL, then

M 2 λz.(λx.x)z = λz.z

since ((λz.(λx.x)z)CL ≡ S(KI)I and (λz.z)CL ≡ I; but λ ` λz(λx.x)z = λz.z

5.2.2 (Definition) (i) A combinatory algebra M is called a λ-algebra if for all A, B ∈ (T )(M)

λ ` Aλ = Bλ ⇒ M � A = B

(ii) A λ-algebra homomorphism is just a combinatory algebra homomorphism.
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5.2.3 (Lemma) Let M be a combinatory algebra. Then M is a λ-algebra iff for all M, N ∈ Λ(M)

1. λ ` M = N ⇒ M � M = N

2. M � Kλ,CL = K, M � Sλ,CL = S

Proof:

5.2.4 (Proposition) (i) φ : M1 → M2, then φdMcM1
ρ = dφ(M)cM2

φ◦ρ, for M ∈ Λ(M). In particular
φdMcM1 = dMcM2 for M ∈ Λ0.

(ii) Let M1 → M2. Then Th(M1) ⊆ Th(M2). Thus if M1 is a λ-algebra, so is M2

(iii) M1 # M2 ⇒ Th(M1) = Th(M2)

Proof: By proposition 5.1.14.

By using Curry’s combinatory axioms Aβ one can axiomatize the class of λ-algebras.

5.2.5 (Theorem)

5.2.6 (Definition) Let M be a combinatory algebra. M is called weakly extensional is for A, B ∈ T (M)

M � ∀(A = B) → λx.A = λx.B

The condition of weak extensionality us rather syntactical. Meyer [1980] and Scott [1980] replace it with the following:

5.2.7 (Definition) (i) In a combinatory algebra define 1 = S(KI)

(ii)A λ-model is a λ-algebra M such that the following Meyer-Scott axiom holds in M

∀x(ax = bx) → 1a = 1b

5.2.8 (Lemma) Let M be a combinatory algebra. Then in M

(i) 1ab = ab

If moreover M is a λ-algebra, then
(ii) 1 = λxy.xy, hence 1a = λy.ay

(iii) 1(λx.A) = λx.A, for all A ∈ T (M)

(iv) 11 = 1
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Proof:

5.2.9 (Proposition) M is a λ-model iff M is a weakly extensional λ-algebra.
Proof:

5.2.10 (Proposition) Let M be a λ-algebra. Then

M is extensional iff M is weakly extensional and satisfies I = 1

Proof:

Terms models, interiors

5.2.11 (Definition) Let T be a λ-theory
(i) Define

M =T N ⇔ T ` M = N (This is a congruence relation on Λ)

[M ]T = {N ∈ Λ|M =T N}

Λ/T = {[M ]T |M ∈ Λ}

[M ]T · [N ]T = [MN ]T (This is well-defined)

The the open model of T is M(T ) = 〈Λ/T , ·, [K]T , [S]T 〉

(ii) By restricting everything to closed terms one defines the closed term model of T

M0(T ) = 〈Λ0/T , ·, [K]0T , [S]0T 〉

Clearly if T is consistent (i.e., doesn’t prove every equation), then T 0 K = S, so M(T ) and M0(T ) are
nontrivial. In particular M(λ) and M0(λ) are nontrivial since they follow from the Church-Rosser Theorem that
the theory λ is consistent.

5.2.12 (Proposition) Let T be an extension of λ-calculus and let M be M(T ) or M0(T ).

(i) For M with FV(M) = {x1, . . . , xn} and ρ with ρ(xi) = [Pi]
(0)
T one has

dMcM
ρ = [M [~x := ~P ]](0)T

(ii) M(T ) is a λ-model.

where [~x := ~P ] denotes simultaneous substitution (refer to exercise 2.4.8)

(ii) T ` M = N ⇒ M � M = N

(iii) T ` M = N ⇔ M � M = N , provided that M = M(T ) or that M, N are closed.

Proof:
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5.2.13 (Corollary) (i) M0(T ) is a λ-algebra.

Proof:

5.2.14 (Definition) Let A be a combinatory algebra.

(i) The interior of A (denoted by A0), is the substructure of A generated by k, s

(ii) A is hard A0 = A

Note that up to isomorphism M0(T ) is the interior of M(T )

5.2.15 (Proposition) Let A be a λ-algebra.

M0(Th(A)) ∼= A0

Let Th(A.) = {M = N |M, N ∈ T (A), M, N closed and A � M = N}. Then M0(Th(A.) ∼= A

Proof:

5.2.16 (Proposition) (i) (Barendregt, Koymans [1980]) Every λ-algebra can be embedded into a λ-model.

(ii) (Meyer [1982]) Every λ-algebra is the homomorphic image of a λ-model.

Proof:

5.2.17 (Theorem) (i) There is a λ-model that cannot be embedded into an extensional λ-model.

(ii)There is a combinatory complete applicative structure that cannot be made into a λ-algebra (by choosing k, s)

(iii) There is a λ-algebra that cannot be made into a λ-model (by changing k, s)

(iv) There is a λ-model that cannot be made into an extensional one (by collapsing it)

Proof: Refer to Barendregt, Koymans [1980].

5.2.18 (Theorem) Let M, N ∈ Λ. Then
(i) λ ` M = N ⇔ M = N is true in all λ-models (or λ-algebras)

(ii) Let T be an ectension of the λ-calculus. Then

T ` M = N ⇔ M = N is true in all λ-models satisfying T

(iii) Let (λ)c be the classical first order theory axiomatized by the universal closure of
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Kxy = x

Sxyz = xz(yz)

K 6= S

∀x(ax = bx) → 1a = 1b

Aβ

Then

(λ)c ` M = N ⇔ λ ` M = N
Proof:

Models and Rules
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