Mathematical Logic IV

The Lambda Calculus; by H.P. Barendregt (1984)
Part One: Chapters 1-5

1 Introduction

The λ -calculus (a theory denoted λ) is a type free theory about functions as *rules*, rather that as graphs {i.e. sets of n-tuples} in order to stress their *computational* aspects. This way of thinking about functions (as rules) involves the basic idea of a function where given certain input the function will, in some sense, generate an output. It seems to me that this is our intutive notion of a function, where a function is a specified "way" of getting something (output) from something (input) as opposed to merely being a set of n-tuples.

A function is a rule of correspondence by which when anything is given (as argument) another thing (the value of the function for that argument) may be obtained. That is, a function is an operation which may be applied on one thing (the argument) to yield another thing (the value of the function). ¹

Application is a primitive operation in λ -calculus. The function f applied to a is denoted by fa.

Abstraction is a sort of generalization over functions. Let $t(\equiv t(x))$ be an expression possibly containing x. Then $\lambda x.t(x)$ is the function f that assigns to the argument a the value t(a). That is,

$$(\beta)$$
 $(\lambda x.t(x))a = t(a)$

Think of this as something like the following: $\lambda x.t(x)$ is the function that applies a given argument (in this case a) to the function t only and yields the value t(a) (i.e., It "substitutes" a in for all of the bound x's in t).

The theory λ has as terms the set Λ ($\lambda - terms$) built up from variables using application and abstraction. The statements of λ are equations between the terms in Λ . Also λ has as its only mathematical axioms the scheme (β).

2 Conversion

2.1 λ -terms and conversion

The principle object of study in the λ -calculus is the set of lambda terms modulo convertibility***.

2.1.1 (Definition) (i) Lambda terms are words over the following alphabet:

 v_0, v_1, \dots variables λ abstractor (,) parentheses

- (ii) The set of λ -terms, Λ , is defined inductively as follows:
- (1) $x \in \Lambda$, x is arbitrary
- (2) $M \in \Lambda \Rightarrow (\lambda x M) \in \Lambda$, x is arbitrary
- (3) $M, N \in \Lambda \Rightarrow (MN) \in \Lambda$
- **2.1.2** (Notation) (i) M, N, L, \ldots denote arbitrary λ -terms.
- (ii) x, y, z, \ldots denote arbitrary variables.
- (iii) Outermost parentheses are not written.
- (iv) The symbol \equiv denotes syntactic equality (i.e., have the same form).
- **2.1.3** (more Notation) (i) Let $\vec{x} \equiv x_1, \ldots, x_n$.

 $^{^1\}mathrm{A.}$ Church The Calculi of Lambda-Conversion-1941-Princeton University Press

Then
$$\lambda x_1 \cdots x_n M \equiv \lambda \vec{x} M \equiv \lambda x_1 (\lambda x_2 (\cdots (\lambda x_n(M)) \ldots))$$

Let $\vec{N} \equiv N_1, \dots, N_n$.

Then
$$MN_1 \cdots N_n \equiv M\vec{N} \equiv (\cdots ((MN_1)N_2) \cdots N_n)$$
 (association to the left)

(iii) ||M|| is the length of M (i.e., the number of symbols in M).

The substitution operator,

$$M[x := N]$$
 denotes the result of substituting N for x in M.

The basic equivalence relation on λ -terms is that of *convertibility*, which will be generated by axioms.

2.1.4 (Definition) The theory λ has as formulas

$$M = N$$

where $M, N \in \Lambda$ and is axiomatized by the following axioms and rules:

- (I) $(\lambda x.M)N = M[x:=N],$ $(\beta\text{-conversion})$ (II.1) M = M(II.2) $M = N \Rightarrow N = M$ (II.3) $M = N, N = L \Rightarrow M = L$ (II.4) $M = N \Rightarrow MZ = NZ$ (II.5) $M = N \Rightarrow ZM = ZN$
- (II.6) $M = N \Rightarrow \lambda x. M = \lambda x. N$ (rule ξ)

Provability in λ of an equation is denoted by $\lambda \vdash M = N$ or just by M = N. If $\lambda \vdash M = N$, then M and N are called *convertible*.

Note: λ is logic free: it merely consists of equations. Connectives and quantifiers will be used in the informal metalanguage discussing about λ .

- **2.1.6** (Definition) A variable x occurs free in a λ -term M if x is not in the scope of λx ; x occurs bound otherwise. This is the same binding criteria of the usual quanifiers.
- **2.1.7** (Definition) (i) FV(M) is the set of free variables in M and can be inductively defined as follows:

$$\begin{aligned} \mathbf{FV}(x) &= \{x\} \\ \mathbf{FV} \ (\lambda x.M) &= \mathbf{FV}(M) - \{x\} \\ \mathbf{FV}(MN) &= \mathbf{FV}(M) \cup \mathbf{FV}(N) \end{aligned}$$

- (ii) M is closed or a combinator if $\mathbf{FV}(M) = \emptyset$.
- (iii) $\Lambda^0 = \{ M \in \Lambda \mid M \text{ is closed} \}$
- (iv) $\Lambda^0(\vec{x}) = \{ M \in \Lambda \mid \mathbf{FV}(M) \subseteq \{\vec{x}\} \}$
- (v) A closure of $M \in \Lambda$ is $\lambda \vec{x}.M$, where $\{\vec{x}\} = \mathbf{FV}(M)$
 - Note that a closure of M depends upon the order of the \vec{x} .
- **2.1.8** (Defintion) (i) M is *subterm* of N (denoted by $M \subset N$) if $M \in \operatorname{Sub}(N)$, where $\operatorname{Sub}(N)$, the collection of subterms of N, is defined inductively as follows:

$$Sub(x) = \{x\}$$

$$Sub(\lambda x.N_1) = Sub(N_1) \cup \{\lambda x.N_1\}$$

$$Sub(N_1N_2) = Sub(N_1) \cup Sub(N_2) \cup \{N_1N_2\}$$

Subterms may occur several times and two subterms are disjoint if they have nome common symbol occurances. A subterm N of M is active if N occurs as $(NZ) \subset M$ for some Z; otherwise N is passive.

2.1.9 (Definition) Let $F, M \in \Lambda$. Then

(i)
$$F^0M \equiv M$$
; $F^{n+1}M \equiv F(F^nM)$

(ii)
$$FM^{\sim 0} \equiv F: FM^{\sim n+1} \equiv FM^{\sim n}M$$

- **2.1.11** (Definition) (i) A change of bound variables in M is the replacement of a part $\lambda x.N$ of M by $\lambda y.(N[x:=y])$, where y does not occur (at all) in N. Since y is a fresh variable there is no threat of messing up the binding properties of the term.
- (ii) M is α -congruent with N (denoted by $M \equiv_a N$) if N results from M by a series of changes of bound variables. ² **2.1.12** (Convention) Terms that are α -conguent are identified. So now we can simply write $\lambda x.x \equiv \lambda y.y$, etc.
- **2.1.13** (variable Convention) If M_1, \ldots, M_n occur in a certain mathematical context (e.g. definition, proof, etc), then in these terms all bound variables are chosen to be different from the free variables.
- **2.1.15** (Definition) The result of *substituting* N for the free occurrences of x in M (denoted by M[x := N]) is defined as follows:

$$x[x := N] \equiv N$$

$$y[x := N] \equiv y, \text{ if } x \neq y$$

$$(\lambda y.M_1)[x := N] \equiv \lambda y.(M_1[x := N])$$

$$(M_1M_2)[x := N] \equiv (M_1[x := N])(M_2[x := N])$$

2.1.16 (Substitution Lemma) If $x \neq y$ and $x \notin \mathbf{FV}(L)$, then

$$M[x := N][y := L] \equiv M[y := L][x := N[y := L]]$$

Proof:

2.1.18 (Defintion) (i) A context C[] is a term with some holes in it. More formally:

x is a context $[\]$ is a context if $C_1[\]$ and $C_2[\]$ are contexts then so are $C_1[\]C_2[\]$ and $\lambda x.C_1[\]$

- (ii) If $C[\]$ is a context and $M\in\Lambda,$ then C[M] denotes the result of placing M in the holes of $C[\]$. In this act free variables in M may become bound by C[M].
- **2.1.21** (Defintion) (i) Let $\vec{N} \equiv N_1, \dots, N_m; \vec{x} \equiv x_1, \dots, x_n$. Then \vec{N} fits in \vec{x} if m = n and the \vec{x} do not occur in $\mathbf{FV}(\vec{N})$.
- (ii) Let $\vec{N} \equiv N_1, \dots, N_M; \vec{L} \equiv L_1, \dots, L_n$. Then

$$\vec{N} = \vec{L}$$
 if $n = m$ and $N_i = L_i$ for $1 \le i \le n$

 $\vec{N} \equiv \vec{L}$ is defined similarly.

(iii) Let \vec{N} fit in $\vec{x} \equiv x_1, \dots, x_n$. Then

$$M[\vec{x} := \vec{N}] \equiv M[x_1 := N_1], \dots, M[x_n := N_n],$$
 where \vec{x} do not occur in $\mathbf{FV}(\vec{N})$

- (iv) Let $M \in \Lambda$. As in predicate logic sometimes we write $M \equiv M(\vec{x})$, to indicate substitution: if $M \equiv M(\vec{x})$ and \vec{N} fits in \vec{x} , then $M(\vec{N}) \equiv M[\vec{x} := \vec{N}]$
- **2.1.22** (Lemma) Let $\vec{x} \equiv x_1, \dots, x_n$. Then $(\lambda \vec{x}.M)\vec{x} = M$.

²This is similar to Church's α -conversion which said $\lambda x.M = \lambda y.M[x := y]$. The difference is that α conversion is a semantic notion (notice the use of '=') and α -congruity is a syntactic notion.

2.1.24 (Combinatory Completeness) Let $M \equiv M(\vec{x})$. Then:

(i)
$$\exists F \ F\vec{x} = M(\vec{x})$$

(ii) $\exists F \ \forall \vec{N} \ F(\vec{N}) = M(\vec{N})$, where \vec{N} fits in \vec{x}
(iii) In (i), (ii) one can take $F \equiv \lambda x.M$

2.1.25 (Definition)

$$\mathbf{I} \equiv \lambda x.x, \, \mathbf{K} \equiv \lambda xy.x, \, \mathbf{S} \equiv \lambda xyz.xz(yz)$$

2.1.26 (Corollary) For all $M, N, L \in \Lambda$

- (i) $\mathbf{I}M = M$
- (ii) $\mathbf{K}MN = M$
- (iii) SMNL = ML(NL)

Lambda terms denote processes. Different terms may denote the same process.

2.1.27 (Definition) (i) Extensionality is the following derivation rule:

$$Mx = Nx \Rightarrow M = N$$
 (ext)

provided that $x \notin \mathbf{FV}(MN)$.

(ii) The theory λ extended by this rule is denoted by $\lambda + ext$.

The only difference between λ and $\lambda + ext$ is that $\lambda x.Mx = M$ is provable in $\lambda + ext$ and not in λ .

2.1.28 (Definition) Consider the folloing axiom scheme η

$$\lambda x. Mx = M$$
 (η -conversion)

provided that $x \notin FV(M)$. $\lambda \eta$ is the theory λ extended with η .

- **2.1.29** (Theorem) The theories $\lambda + ext$ and $\lambda \eta$ are equivalent.³
- **2.1.30** (Definition) (i) An equation is a formula of the form M = N with $M, N \in \Lambda$; the equation is closed if $M, N \in \Lambda^0$.
- (ii) Let \mathscr{T} be a formal theory with equations as formulas. Then \mathscr{T} is *consistent* (denoted by $\operatorname{Con}(\mathscr{T})$) if \mathscr{T} does not prove every closed equation. If \mathscr{T} does prove every closed equation then it is *inconsistent*.
- (iii) If $\mathscr T$ is a set of equations, then $\lambda + \mathscr T$ is the theory obtained from λ by adding the equations of $\mathscr T$ as axioms. $\mathscr T$ is called *consistent* if $\operatorname{Con}(\lambda + \mathscr T)$.
- **2.1.31** (Fact) The theories λ and $\lambda \eta$ are consistent.⁴
- **2.1.32** (Definition) Let $M, N \in \Lambda$. Then M and N are incompatible (denoted by M # N), if $\neg \text{Con}(M = N)$.

³Theorem **2.1.29** is attributed to Curry. Also, the extensional λ -calculus is usually denoted by $\lambda \eta$.

⁴The theory λ extended by a single axiom may become inconsistent.

Normal Forms

Consider a term like

$$(\lambda x.xa)I$$

This term can be computed to yield

 $\mathbf{I}a$

and gives

 \boldsymbol{a}

The term a is called a normal form, for it does not "compute" any further.

- **2.1.34** (Definition) Let $M \in \Lambda$.
- (i) M is a β -normal form (abbreviated by β -nf or just nf) if M has no subterm $(\lambda x.R)L$
- (ii) M has a β -nf if there exists an N such that N=M and N is a β -nf.⁵
- **2.1.35** (Definition) Let $M \in \Lambda$.
- (i) M is a $\beta\eta$ -nf if M has no subterm $(\lambda x.P)Q$ or $(\lambda x.Rx)$ with $x \notin FV(R)$.
- (ii) M has a $\beta \eta$ -nf if

$$\exists N[\lambda \eta \vdash M = N \text{ and } N \text{ is a } \beta \eta \text{-nf.}]$$

- **2.1.36** (Fact) M has a $\beta \eta$ -nf $\Leftrightarrow M$ has a β -nf.⁶
- **2.1.37** (Fact) (i) If M, N are different β -nf's, then

$$\lambda \nvdash M = N$$

- (ii) Similarly for $\beta \eta$ -nf's and provability in $\lambda \eta$.
- **2.1.38** (Corollary) The Theories λ and $\lambda\eta$ are consistent.
- **2.1.39** (Fact) If M, N are different $\beta \eta$ -nf's, then M # N.
- **2.1.40** (Theorem) Suppose M, N have a nf. Then either $\lambda \eta \vdash M = N$ or $\lambda \eta + M = N$ is inconsisten.

3 Reduction

There is a certain asymmetry in the defining equation for λ -abstraction. The statement

$$(\lambda x.x^2 + 1)3 = 10$$

can be interpreted as "10 is the result of computing $(\lambda x.x^2 + 1)3$ " (i.e., 10 is the result of the function applying 3 to the function $x^2 + 1$). This computational aspect will be expressed by writing

$$(\lambda x.x^2+1)3 \rightarrow 10$$

which reads " $(\lambda x.x^2 + 1)$ 3 reduces to 10."

⁵If M is a nf, then it is also said to be in nf.

⁶Curry et al. [1972]

 $^{^{7}}$ B**ö**hm [1968]

The Church-Rosser theorem says that if two terms are convertible, then there is a term to which they both reduce. In many cases the inconvertibility of two terms can be proved by showing that they don't reduce to a common term.

Notions of Reduction 3.1

3.1.1 (Definition) (i) A binary relation R on Λ is compatible (with the operations) if

$$(M,M') \in R \Rightarrow (ZM,ZM') \in R, (MZ,M'Z) \in R \text{ and } (\lambda x.M,\lambda x.M') \in R$$

for all $M, M', Z \in \Lambda$.

- (ii) An equality (or congruence) relation on Λ is a compatible equivalence relation.
- (iii) A reduction relation on Λ is one which is compatible, reflexive, and transitive.

Note: A relation $R \subseteq \Lambda^2$ is compatible if

$$(M, M') \in R \Rightarrow (C[M], C[M']) \in R$$

for all $M, M' \in \Lambda$ and all contexts $C[\]$, with one hole.

- **3.1.2** (Definition) (i) A notion of reduction on Λ is a just a binary relation R on Λ .
- (ii) If R_1 , R_2 are notions of reduction, then R_1R_2 is $R_1 \cup R_2$.
- 3.1.3 (Definition) $\beta = \{((\lambda x.M)N, M[x := N]) \mid M, N \in \Lambda\}.$
- **3.1.4** (Definition) If \succ is a binary relation on a set X, then the reflexive closure of \succ (denoted by \succeq) is the least relation extending R that is reflexive. The transitive closure (denoted by \succ^*) and the compatible closure are defined similarly.
- **3.1.5** (Defintion) Let R be a notion of reduction on Λ .
- (i) Then R induces the binary realations

$$\rightarrow_{R}$$
 one step R-reduction

- $\twoheadrightarrow_{\mathbf{R}} R$ -reduction
- $=_R R$ -equality (also called R-convertibility)

inductively defined as follows. \rightarrow_R is the compatible closure of R:

- $(1) (M, N) \in R \Rightarrow M \to_R N$
- $(2) \stackrel{.}{M} \rightarrow_R N \Rightarrow ZM \rightarrow_R ZN$
- $(3) M \to_R N \Rightarrow MZ \to_R NZ$ $(4) M \to_R N \Rightarrow \lambda x.M \to_R \lambda x.N$

 \rightarrow_R is the reflexive, transitive closure of \rightarrow_R :

- $\begin{array}{ccc} (1) \ M \rightarrow_R N & \Rightarrow M \twoheadrightarrow_R N \\ (2) \ M \twoheadrightarrow_R M \end{array}$
- $(3) M \twoheadrightarrow_{R} N, N \twoheadrightarrow_{R} L \Rightarrow M \twoheadrightarrow_{R} L$

 $=_R$ is the equivalence relation generated by \twoheadrightarrow_R :

- $\begin{array}{ll} (1)\ M \twoheadrightarrow_R N & \Rightarrow M =_R N \\ (2)\ M =_R N & \Rightarrow N =_R M \end{array}$
- (3) $M =_R N, N =_R L \Rightarrow M =_R L$
- (ii) The basic relations derived from R are pronounced as follows:

 $M \twoheadrightarrow_{R} N$: M R-reduces to N or N is an R-reduct of M

 $M \rightarrow_R N$: M R-reduces to N in one step

 $M =_R N$: M is R-convertible to N

The relations \rightarrow_R , \rightarrow_R , and $=_R$ are introduced inductively. Therefore properties about these relations can be proved inductively.

3.1.6 (Lemma) The relations \rightarrow_R , \rightarrow_R , and $=_R$ are all compatible. Therefore, \rightarrow_R is a reduction relation and $=_R$ is an equality relation. *Proof*:

3.1.7 (Remarks) By the compatibility of \rightarrow_R it follows (by induction on the structure M) that

$$N \twoheadrightarrow_R N' \Rightarrow M[x := N] \twoheadrightarrow_R M[x := N']$$

- (ii) The notion of compatible relation can be generalized directly to any set X with some operations on it. We can then speak of equality and reduction relations.
- (iii) Notions of reduction will be denoted by boldface letters; e.g. β , η , Ω . The derived relations will be written using the corresponding lightface symbols; e.g. \rightarrow_{β} , \rightarrow_{β} , etc.

For the remainder of the section R is a notion of reduction on Λ .

- **3.1.8** (Definition) (i) An R-redex is a term M such that $(M, N) \in R$ for some term N. In this case N is called an R-contractum of M.
- (ii) A term M is called an R-normal form (R-nf) if M does not contain (as subterm) any R-redex.
- (iii) A term N is an R-nf of M (or M has the R-nf N) if N is an R-nf and $M =_R N$.

The process of stepping from a redex to a contractum is called *contraction*.

3.1.9 (Lemma)

3.1.10 (Corollary)

3.1.11 (Definition) (i) Let \succ be a binary relation on Λ . Then \succ satisfies the diamond property (denoted by $\succ \models \diamondsuit$) if

$$\forall M, M_1, M_2 \ [M \succ M_1 \ \land \ M \succ M_2 \Rightarrow \exists M_3 [M_1 \succ M_3 \ \land \ M_2 \succ M_3]]$$

see figure 3.1 (p. 54)

- (iii) A notion of reduction R is said to be *Church-Rosser* (CR) if \twoheadrightarrow_R satisfies the diamond property.
- **3.1.12** (Theorem)
- **3.1.13** (Corollary)

3.1.14 (Definition) A binary relation R on Λ is *substitutive* if for all $M, N, L \in \Lambda$ and all variables x one has

$$(M,N) \in R \Rightarrow (M[x:=L],N[x:=L]) \in R$$

3.1.15 (Proposition)

3.1.16 (Proposition)

3.1.17 (Definition) (i) Let Δ be a subterm occurrence of M, that is, $M \equiv C[\Delta]$. Write

$$M \xrightarrow{\Delta}_R N$$

if Δ is an R-redex with contractum Δ' and $N \equiv C[\Delta']$.

(ii) A R-reduction (path) is a finite or infinite sequence

$$M_0 \stackrel{\Delta_0}{\rightarrow}_R M_1 \stackrel{\Delta_1}{\rightarrow}_R M_2 \rightarrow_R \dots$$

3.1.18 (Conventions) (i) σ , τ ,... range over reduction paths.

(ii) The reduction path σ in definition 3.1.17(ii) starts with M_0 . If there is a last term M_n in σ , the σ ends with M_n . In that case one also says that σ is a reduction path from M_0 to M_n . If n=0, then σ is called the empty reduction (denoted by \emptyset : $M_0 \to_R M_0$). If $n \neq 0$, then σ is a proper R-reduction (denoted by $(\sigma : M_0 \to_R M_n)$).

(iii) Sometimes the Δ_0, Δ_1 are left out in denoting a reduction path.

(iv) We often write $\sigma: M_0 \to M_1 \to \dots$ to indicate that σ is the path $M_0 \to M_1 \to \dots$

(v) If $\sigma: M_0 \to \ldots \to M_n$ and $\tau: M_n \to M_m$, then

$$\sigma + \tau : M_0 \to \ldots \to M_n \to \ldots \to M_m$$

(vi) If Δ is an R-redux occurrence in M with contractum Δ' , then (Δ) denotes the one step reduction $M \xrightarrow{\Delta}_R N$. That is,

$$(\Delta):C[\Delta] \xrightarrow{\Delta}_R C[\Delta']$$

(vii) If σ is a R-reduction path, then $\parallel \sigma \parallel$ is its length (i.e., the number of \rightarrow_R steps in it). Note that $\parallel \sigma \parallel \in \mathbb{N} \cup \{\infty\}$.

3.1.20 (Definition) The R (reduction) graph of a term M (denoted by $G_R(M)$) is the set

$$\{N\in\Lambda\mid M\twoheadrightarrow_R N\}$$

directed by \to_R : if several redexes give rise to $M_0 \to_R M_1$, then that many directed arcs connect M_0 to M_1 in $G_R(M)$.

- **3.1.22** (Definition) Let $M \in \Lambda$.
- (i) M R-strongly normalizes (denoted by R-SN(M)) if there is no infinite R-reduction starting with M.
- (ii) M is R-infinite (denoted by $R \infty(M)$) if not R-SN(M).
- (iii) R is strongly normalizing (SN) if $\forall M \in \Lambda$ R-SN(M).
- **3.1.23** (Fact)
- **3.1.24** (Definition) (i) A binary relation \succ (on a set X) satisfies the weak diamond property if

where \succeq is the transitive reflexive closure of \succ .

- (ii) A notion of reduction R is weakly Church-Rosser (WRC) if \rightarrow_R satisfies the weak diamond property.
- **3.1.25** (Proposition)
- 3.1.26 (Notation) (i) R-NF = $\{M \in \Lambda \mid M \text{ is in } R$ -nf $\}$, R-NF $^0 = R$ -NF $\cap \Lambda^0$.
- (ii) If $\mathfrak{X} \subseteq \Lambda$, then $M \in_R \mathfrak{X}$ iff $M' =_R M$ for some $M' \in \mathfrak{X}$. In this notation, $M \in_{\beta} \beta$ -NF iff M has a β -nf.
- **3.1.27** (Definition) (i) $M \in \Lambda^0$ is R-solvable if $\exists \vec{P} \in \Lambda \ M\vec{P} =_R I$.
- (ii) $M \in \Lambda$ is R-solvable if some closed substitution instance of M is R-solvable.
- 3.2 Beta Reduction
- 3.2.1 (Proposition)
- **3.2.2** (Lemma)
- **3.2.3** (Definition) Define a binary relation \rightarrow on Λ inductively as follows:

$$M \twoheadrightarrow M' \Rightarrow \lambda x.M \twoheadrightarrow \lambda x.M'$$

$$M \xrightarrow{\rightarrow} M', N \xrightarrow{\rightarrow} N' \Rightarrow MN \xrightarrow{\rightarrow} M'N'$$

$$M \xrightarrow{} M', N \xrightarrow{} N' \Rightarrow (\lambda x.M)N \xrightarrow{} M'[x := N']$$

3.2.4 (Lemma)

3.2.5 (Lemma)

3.2.6 (Lemma)

3.2.7 (Lemma)

3.2.8 (Theorem) The Church-Rosser Theorem (CR)

- (i) $\boldsymbol{\beta}$ is CR.
- (ii) $M =_{\beta} N \Rightarrow \exists Z[M \twoheadrightarrow_{\beta} Z \land N \twoheadrightarrow_{\beta} Z]$

3.2.9 (Corollary)

3.2.10 (Theorem)

3.2.11 (Convention) The notion of reduction β will be used throughout this book. Therefore, to simplify notation the subscripts will be suppressed. That is

$$\rightarrow_{\beta}$$
, \rightarrow_{β} , $G_{\beta}(M)$, β -NF, $\beta - \infty(M)$ and β -solvable

will be denoted by

$$\rightarrow$$
, \rightarrow , $G(M)$, NF, $\infty(M)$ and solvable.

Note: The notation \in_{β} will NOT be replaced by \in .

3.3 Eta Reduction

3.3.1 (Definition) (i) $\eta: \lambda x. Mx \to M$ provided $x \notin FV(M)$; that is $\eta = \{(\lambda x. Mx, M) \mid x \notin FV(M)\}$

(ii) $\beta \eta = \beta \cup \eta$

4 Theories

4.1 Lambda Theories

Lambda theories are consistent extensions of the λ -calculus that are closed under derivations. They are studied because of their own interest and because of their application to ordinary λ -conversion.

Remember that a (closed) equation is a formula of the form M=N, with $M, N \in \Lambda^0$. If \mathcal{T} is a set of equations, then the theory $\lambda \mathcal{T}$ is obtained by adding to the axioms and rules of the λ -calculus the equations in \mathcal{T} as new axioms.

4.1.1 (Definition) Let \mathcal{T} be a set of closed equations.

 \mathscr{T}^+ is the set of closed equations provable in $\lambda + \mathscr{T}$.

 \mathcal{T} is a λ -theory if \mathcal{T} is consistent and $\mathcal{T}^+ = \mathcal{T}$.

By corollary 2.1.38 both λ and $\lambda \eta$ are λ -theories.

4.1.2 (Remarks) (i) Since the rules ξ is in λ , each λ -theory $\mathcal T$ is closed under ξ and hence $\mathcal T \vdash M = N \Leftrightarrow \mathcal T \vdash \lambda x. M = \lambda x. N$.

The \Leftarrow follows since $(\lambda x.M)x = M$ in \mathcal{I} .

- (ii) By (i) it follows that it does not matter to resrict ourselves in 4.1.1 to sets of closed equations.
- (iii) Clearly Con(\mathscr{T}) $\Leftrightarrow \lambda + \mathscr{T} \not\vdash \mathbf{T} = \mathbf{F}$.
- (iv) Each λ -theory is identified with the set of closed equations provable in it. In particular, $\lambda = \{M = N | M, N \in \Lambda^0 \text{ and } \lambda \vdash M = N\}.$
- **4.1.3** (Proposition) Let $\mathcal T$ be a λ -theory. Then
 - (i) $\mathscr{T} \vdash M = M' \Rightarrow \mathscr{T} \vdash \mathbb{C}[M] = \mathbb{C}[M']$
 - (ii) $\mathscr{T}M = M', \mathscr{T} \vdash N = N' \Rightarrow \mathscr{T} \vdash M[x := N] = M'[x := N']$

Proof: (i) By induction on the structure of C[].

(ii) Assume $\mathcal{T} \vdash M = M'$. Then by (i) $\mathcal{T} \vdash (\lambda x.M)N = \lambda.M')N$ hence $\mathcal{T} \vdash M[x := N] = M'[x := N']$.

If moreover $\mathcal{T} \vdash N = N'$, then by (i) $\mathcal{T} \vdash M'[x := N] = M'[x := N']$ and we're done.

- **4.1.4** (Notation) Let \mathcal{T} be a theory.
 - (i) $\mathscr{T} \vdash M = N$ stands for $\lambda + \mathscr{T} \vdash M = N$; this is also written as $M = \mathscr{T} N$.
 - (ii) $\mathcal{T} + M = N$ stands for $(\mathcal{T} \cup \{M = N\})^+$.
 - (iii) $\mathcal{I}\eta$ stands for $(\lambda \eta + \mathcal{I})^+$.
 - (iv) If $\mathscr{T} = (\mathscr{T}_0)^+$, then \mathscr{T} is said to be axiomatized by \mathscr{T}_0 .
 - (v) Write $x \in_{\mathscr{T}} M$ if $\forall N =_{\mathscr{T}} M$, $x \in FV(N)$.
 - (vi) $M \in_{\mathscr{T}} \mathfrak{X}$ if $\exists N =_{\mathscr{T}} M, \ N \in \mathfrak{X}$.
 - (vii) $1 \equiv \lambda xy.xy$ (Church's numeral 1)
- **4.1.5** (Lemma) For a λ -theory $\mathcal T$ one has $\mathcal T\eta=\mathcal T+$ (I = 1). *Proof*:

Note: An important λ -theory is obtained following the proposal 2.2.14 to identify unsolvable terms.

4.1.6 (Definition) (i)
$$\mathcal{K} = \{M = N | M, N \in \Lambda^0, \text{unsolvable}\}\$$

(ii)
$$\mathscr{K} = \mathscr{K}_0^+$$
.

- **4.1.7** (Definition) Let \mathscr{T} be a t λ -theory.
 - (i) \mathcal{T} is r.e. if after coding \mathcal{T} is a recursively enumerable set of integers.
 - (ii) \mathscr{T} is sensible if $\mathscr{K} \subseteq \mathscr{T}$.
 - (iii) \mathcal{T} is semi sensible (s.s.) if \mathcal{T} does not equate a solvable and an unsolvable term.

Note: Both λ and $\lambda \eta$ are r.e. and s.s. (the latter will be proved in §17.1).

- **4.1.8** (Lemma) (i) Let \mathbf{K}^{∞} be a fixed point of \mathbf{K} . Then $\mathbf{I} = \# \mathbf{K}^{\infty}$.
 - (ii) (Jacopini [1975]) Let $\omega_3 \equiv \lambda x.xxx$ and $\Omega_3 \equiv \omega_3\omega_3$. Then I $\#_I\Omega_3$.

Proof: (i) First note that $\mathbf{K}^{\infty} = \mathbf{K}\mathbf{K}^{\infty} = \mathbf{K}^{\infty}$. Hence

$$I = K^{\infty} \vdash M = IM = K^{\infty}M = K^{\infty} = K^{\infty}N = IN = N.$$

(ii) Note that $\Omega_3 \equiv \omega_3 \omega_3 = \omega_3 \omega_3 \omega_3 \equiv \Omega_3 \omega_3$. Hence

$$I = \Omega_3 \vdash I = \Omega_3 = \Omega_3 \omega_3 = I\omega_3 = \omega_3.$$

Since **I** and ω_3 are different $\beta\eta$ -nf's, one has by Böhm's theorem for $\lambda \mathbf{I}$, theorem 10.5.31, that **I** $\#_I\omega_3$. Hence we're done.

4.19 (Corollary) $\mathcal T$ sensible $\Rightarrow \mathcal T$ semi sensible. *Proof*:

Rules

The rule of extensionality (ext) and the rule ξ from chapter two. Plus:

4.1.10 (Definition) (i) The ω -rule is $\omega : \forall Z \in \Lambda^0 MZ = NZ \Rightarrow M = N$

(ii) The term rule is

$$tr: \forall Z \in \Lambda^0 MZ = NZ \Rightarrow Mx = Nx$$
, for arbitrary x.

- **4.1.11** (Definition) Let \mathscr{T} be a λ -theory.
 - (i) ${\mathscr T}$ is closed under the ${\pmb \omega}$ -rule notation ${\mathscr T} \vdash {\pmb \omega}$ if

$$\forall Z \in \Lambda^0 \quad \mathscr{T} \vdash MZ = NZ \Rightarrow \mathscr{T} \vdash M = N$$

- (ii) Similarly one defines $\mathscr{T} \vdash R$ for the other rules. Note that by definition, for every λ -theory \mathscr{T} one has $\mathscr{T} \vdash \xi$
- (iii) \mathscr{T} is extensional if $\mathscr{T} \vdash ext$.

4.1.12 (Lemma) (i) $\mathscr{T} \vdash \omega \Leftrightarrow \mathscr{T} \vdash tr$ and $\mathscr{T} \vdash ext$

(ii)
$$\mathscr{T} \vdash ext \Leftrightarrow \mathscr{T} \vdash \mathbf{I} = 1 \Leftrightarrow \mathscr{T} = \mathscr{T} = \mathscr{T} \eta$$
. Proof:

4.1.13 (Notation) For a λ -theory mathscrT and a rule R let $\mathscr{T} + R$ of $\mathscr{T}R$ be

$$\{M = N | M, N \in \Lambda^0 \text{ and } \lambda + R + \mathscr{T} \vdash M = N\}$$

in the obvious sense.

In general $\mathscr{T}R$ does not need to be a λ -theory; corollary 15.3.7 shows that $\neg \operatorname{Con}(\mathscr{T}\eta)$ for some λ -theory \mathscr{T} .

4.1.14 (Definition) Let \mathbb{R}^0 be the rule \mathbb{R} restricted to closed terms. E.g. ext is

$$Fx=F'x,F,F'\in\Lambda^0$$
 and $x\notin\mathrm{FV}(FF')\Rightarrow F=F'$

4.1.15 (Proposition) Let $\mathscr T$ be a λ -theory. Then

- (i) (Hindley and Longo [1980]) $\mathscr{T} \vdash \omega^0 \Leftrightarrow \mathscr{T} \vdash \omega$
- (ii) $\mathscr{T} \vdash tr^0 \Leftrightarrow \mathscr{T} \vdash tr$
- (iii) $\mathscr{T} \vdash ext^0 \not\Rightarrow \mathscr{T} \vdash ext$.

Proof:

Term Models

Term models consist of the set of closed λ -terms modulo some λ -theory \mathcal{T} and reflect the properties of such a theory.

4.1.16 (Definition) (i) A combinatory algebra is a structure

$$\mathfrak{M} = \langle X, \cdot, k, s \rangle$$

such that the Card(X) > 1 and kxy = x, sxyz = xz(yz) are valid in \mathfrak{M} .

Moreover such a structure is extensional if in \mathfrak{M}

$$(\forall x \ ax = bx) \rightarrow a = b$$

4.1.17 (Definition) Let $\mathcal T$ be a λ -theory.

(i) The (open) term model of \mathcal{T} is the structure

$$\mathfrak{M}(\mathscr{T}) = \langle \Lambda / =_{\mathscr{T}}, \cdot, [K]_{\mathscr{T}}, [S]_{\mathscr{T}} \rangle$$

where for $M, N \in \Lambda$

$$M =_{\mathscr{T}} N \Leftrightarrow \mathscr{T} \vdash M = N$$

$$[M]_{\mathscr{T}} = \{N \in \Lambda | M =_{\mathscr{T}} N\}$$

$$\Lambda/=_{\mathscr{T}}=\{[M]_{\mathscr{T}}|M\in\Lambda\}$$

$$[M]_{\mathscr{T}}\cdot[N]_{\mathscr{T}}=[MN]_{\mathscr{T}}$$

(ii) Similarly one defines the closed term model

$$\mathfrak{M}^{0}(\mathscr{T}) = \langle \Lambda^{0} / =_{\mathscr{T}}, \cdot, [K]_{\mathscr{T}}, [S]_{\mathscr{T}} \rangle$$

- **4.1.18** (Proposition) Let $\mathcal T$ be a λ -theory. Then
 - (i) $\mathfrak{M}(\mathscr{T})$ and $\mathfrak{M}^{0}(\mathscr{T})$ are combinatory algebras.
 - (ii) $\mathscr{T} \vdash ext \Leftrightarrow \mathfrak{M}(\mathscr{T})$ is extensional.
- (iii) $\mathscr{T} \vdash \omega \Leftrightarrow \mathfrak{M}^0(\mathscr{T})$ is extensional. Proof:

Remark: In general

$$\mathscr{T} \vdash ext \not\Rightarrow \mathfrak{M}^0(\mathscr{T})$$
 is extensional.

This is so because $\lambda \eta \vdash ext$ but not ω .

4.1.19 (Definition)(i) Let \mathcal{T} be a λ -theory. Then the canonical map

$$\phi_{\mathscr{T}}: \Lambda \to \mathfrak{M}(\mathscr{T})$$
 is defined by $\phi_{\mathscr{T}}(\mathfrak{M}) = [\mathfrak{M}]_{\mathscr{T}}$

(ii) If $\mathscr{T}_1, \mathscr{T}_2$ are λ -theories with $\mathscr{T}_1 \subseteq \mathscr{T}_2$, then the canonical map

$$\phi_{\mathscr{T}_1\mathscr{T}_2}:\mathfrak{M}(\mathscr{T}_1)\to \mathfrak{M}(\mathscr{T}_2)$$
 is defined by $\phi_{\mathscr{T}_1\mathscr{T}_2}([M]_{\mathscr{T}_1})=[M]_{\mathscr{T}_2}$

(iii) Similarly one defines canonical maps

$$\phi^0_{\mathscr{T}}:\Lambda^0 \to \mathfrak{M}^0(\mathscr{T}) \text{ and } \phi^0_{\mathscr{T}_1,\mathscr{T}_2}:\mathfrak{M}^0(\mathscr{T}_1) \to \mathfrak{M}^0(\mathscr{T}_2)$$

4.1.20 (Lemma)

Lambda theories are non degenerate congruence relations on $\mathfrak{M}(\lambda)$.

Completeness of theories

4.1.22 (Definition) An equational theory $\mathcal T$ is called *Hilbert Post* (HP)- complete if for every equation M=N in the language of $\mathcal T$

$$\mathcal{T} \vdash M = N \text{ or } \mathcal{T} + (M = N) \text{ is consistent.}$$

The notion applies to particular λ -theories. HP-complete theories correspond to maximally consistent theories in first order model theory. Although, if $\mathfrak A$ is a first order structure then $\mathrm{Th}(\mathfrak A)$ is maximally consistent. But if $\mathfrak M$ is, say, a combinatory algebra, then

$$Th(\mathfrak{M}) = \{ M = N | \mathfrak{M} \models M = N, M, N \in \Lambda^0 \}$$

is not necessarily complete. For example, $\operatorname{Th}(\mathfrak{M}(\lambda)) = \lambda$ and this theory has many proper extensions.

By Zorn's lemma every λ -theory can be extended to a HP-complete one.

5 Models

INTRODUCTORY STUFF!

5.1 Combinatory Algebras

- **5.1.1** (Definition) (i) $\mathfrak{M} = (X, \cdot)$ is an applicative structure if \cdot is a binary operation on X.
 - (ii) Such a structure is *extensional* if for $a, b \in X$ one has

$$(\forall x \in X \ a \cdot x = b \cdot x) \Rightarrow a = b$$

Notation: (i) As in algebra, $a \cdot b$ is usually written ab. If $\vec{b} = b_1, \ldots, b_n$, then $a\vec{b} = ab_1, \ldots, b_n = (\ldots ((ab_1)b_2) \ldots b_n)$

- (ii) If $\mathfrak{M} = (X, \cdot)$ then we write $a \in \mathfrak{M}$ instead of $a \in X$.
- **5.1.2** (Definition) Let \mathfrak{M} be an applicative structure
 - (i) The set of terms over \mathfrak{M} (denoted by $\mathscr{T}(\mathfrak{M})$) is inductively defined as follows

$$v_0, v_1, v_2, \ldots \in \mathscr{T}(\mathfrak{M}),$$
 (variables)

$$a \in \mathfrak{M} \Rightarrow c_a \in \mathscr{T}(\mathfrak{M}),$$
 (constants)

$$A, B \in \mathscr{T}(\mathfrak{M}) \Rightarrow (AB) \in \mathscr{T}(\mathfrak{M})$$

Notation: $A, B \dots$ denote arbitrary terms and x, y, \dots arbitrary variables in $\mathcal{T}(\mathfrak{M})$

(ii) a valuation in \mathfrak{M} is a map ρ : variables $\to \mathfrak{M}$. For a valuation ρ in \mathfrak{M} the interpretation of $A \in \mathscr{T}(\mathfrak{M})$ in \mathfrak{M} under ρ (denoted by $(A)^{\mathfrak{M}}_{\rho}$ or $(A)^{\mathfrak{M}}_{\rho}$ or $(A)^{\mathfrak{M}}_{\rho}$ if \mathfrak{M} or ρ is clear from the context) is inductively defined as usual:

$$(x)_{\rho}^{\mathfrak{M}} = \rho(x)$$

$$(c_a)_a^{\mathfrak{M}} = a$$

$$(AB)_{a}^{\mathfrak{M}} = (A)_{a}^{\mathfrak{M}}(B)_{a}^{\mathfrak{M}}$$

- (iii) A = B us true in \mathfrak{M} under the valuation ρ (denoted by $\mathfrak{M}, \rho \models A = B$) if $(A)_{\rho}^{\mathfrak{M}} = (B)_{\rho}^{\mathfrak{M}}$.
- (iv) A = B is true in \mathfrak{M} (denoted by $\mathfrak{M} \models A = B$) if $\mathfrak{M}, \rho \models A = B$ for all valuations ρ .
- (v) The relation \vDash is also used for first order formulas over \mathfrak{M} . The definition is as usual.

Remember that when evaluating a formula, the free variables of that formula are dependent on the interpretation, ρ .

5.1.3 (Definition) (Due to Curry) An applicative structure \mathfrak{M} is a *combinatory complete* if for every $A \in \mathscr{T}(\mathfrak{M})$ and x_1, \ldots, x_n with $\mathrm{FV}(A) \subseteq \{x_1, \to, x_N\}$ one has ion \mathfrak{M}

$$\exists f \ \forall x_1,\ldots,x_n=A$$

Note that an extensional applicative structure is combinatory complete iff for all $A \in \mathscr{T}(\mathfrak{M})$ one has

$$\exists ! f \ \forall \vec{x} f \vec{x} = A(\vec{x})$$

- 5.1.4 (Notation) Intuitive. . .
- 5.1.5 (Lemma) Let \mathfrak{M} be an applicative structure and $A, A', B, B' \in \mathscr{T}(\mathfrak{M})$ Then

(i)
$$(A[x := B])_{\rho} = (A)_{\rho(x := (B)_{\rho})}$$

(ii)
$$\mathfrak{M} \vDash A = A' \ \land \ B = B' \Rightarrow \mathfrak{M} \vDash A[x := B] = A'[x := B']$$
 Proof:

- **5.1.6** (Definition) Let $\mathfrak{M}=(X,\cdot)$ be an applicative structure and let $\phi:X^n\to X$ be a map
 - (i) ϕ is representable over \mathfrak{M} if

$$\exists f \in X \ \forall \vec{a} \in \phi(\vec{a})$$

(ii) ϕ is algebraic over \mathfrak{M} if there is a term $A \in \mathscr{T}(\mathfrak{M})$ with $\mathrm{FV}(A) \subseteq \{x_1, \ldots, x_n\}$ such that

$$\forall \vec{a} \ \phi(\vec{a}) = (A)_{\rho(\vec{x}:=\vec{a})}$$
 Note that this is independent of ρ . Why?

Combinatory completeness says that all algebraic functions are representable. The converse is trivial.

- **5.1.7** (Definition) A combinatory algebra is an applicative structure $\mathfrak{M}=(X,\cdot,k,s)$ with k and s defined as usual.
- **5.1.8** (Definition) Let \mathfrak{M} be a combinatory algebra.
 - (i) Extend $\mathscr{T}(\mathfrak{M})$ with new constants K and S denoting k and s respectively. Also I = SKK.
 - (ii) For $A = \mathcal{T}(\mathfrak{M})$ and a variable x, define $\lambda^* x \cdot A \in \mathcal{T}(\mathfrak{M})$ inductively as follows

$$\lambda^* x.x = I$$

 $\lambda^* x.P = KP$, if P does not contain x

$$\lambda^* x.PQ = S(\lambda^* x.P)(\lambda^* x.Q)$$

- (iii) Let $\vec{x} = x_1, \ldots, x_n$. Then $\lambda^* \vec{x} \cdot A = (\lambda^* x_1 \ldots (\lambda^* x_n A) \ldots)$
- **5.1.9** (Proposition) Intuitive. . .

- **5.1.10** (Theorem) An applicative structure \mathfrak{M} is combinatory complete iff it can be expanded to a combinatory algebra (by choosing k, s). Hence every combinatory algebra is combinatory complete. *Proof*:
- 5.1.11 (Remarks) Note that a combinatory algebra $\mathfrak{M}=(X,\cdot,k,s)$ is nontrivial (i.e., $\operatorname{Card}(\mathfrak{M}>1)$ iff $k\neq s$. Indeed, k=s implies a=s(ki)(ka)z=k(ki)(ka)z=i for all a, so \mathfrak{M} is trivial. We usually just assume that what we are dealing with is nontrivial.
- **5.1.12** (Definition) (i) Let $\mathfrak{M}_i = (X_i, \cdot_i, k_i, s_i), i = 1, 2$, be combinatory algebras. Then $\phi : X_1 \to X_2$ is a homomorphism (denoted by $\phi : \mathfrak{M}_1 \to \mathfrak{M}_2$) if ϕ preserves application and k and s, i.e. $\phi(x \cdot_1 y) = \phi(x) \cdot_2 \phi(y), \phi(k_1) = k_2$, and $\phi(s_1) = s_2$.
 - (ii) $\mathfrak{M}_1 \to \mathfrak{M}_2$ if $\phi : \mathfrak{M}_1 \to \mathfrak{M}_2$ for some ϕ .
 - (iii) ${\mathfrak M}$ is $\mathit{embeddable}$ in ${\mathfrak M}_2$ (denoted by ${\mathfrak M}_1 \, \hookrightarrow \, {\mathfrak M}_2)$ if $\phi: {\mathfrak M}_1 \, \longrightarrow \, {\mathfrak M}_2$ for some injective $\phi.$

 \mathfrak{M}_1 is a substructure of \mathfrak{M}_2 (denoted $\mathfrak{M}_1 \subset \mathfrak{M}_2$) with ϕ the identity.

- (iv) \mathfrak{M}_1 is isomorphic to \mathfrak{M}_2 (denoted by $\mathfrak{M}_1 \cong \mathfrak{M}_2$) if $\phi : \mathfrak{M}_1 \to \mathfrak{M}_2$ for some bijective ϕ .
- **5.1.13** (Definition) (i) \mathcal{C} is the set of terms of combinatory logic, i.e. applicative terms built up with variables and K, S only.

$$\mathcal{C}^0 = \{ P \in \mathcal{C} | \text{FV}(P) = \emptyset \}$$

(ii) Let \mathfrak{M} be a combinatory algebra. Then

$$Th(\mathfrak{M}) = \{ P = Q | \mathfrak{M} \models P = Q, \ P, Q \in \mathcal{C}^0 \}$$

- 5.1.13 (Proposition) Let $\phi: \mathfrak{M}_1 \to \mathfrak{M}_2$. Then for $P, Q \in \mathscr{T}(\mathfrak{M})$
 - (i) $\phi(\lceil P \rfloor)_{\rho}^{\mathfrak{M}_1} = \lceil \phi P \rfloor_{\phi \circ \rho}^{\mathfrak{M}_2}$, where $\phi(P)$ results from P by replacing the constants c_a by $c_{\phi(a)}$.
 - (ii) $\mathfrak{M}_1 \models P = Q \Rightarrow \mathfrak{M}_2 \models \phi(P) = \phi(Q)$, provided $P < Q \in \mathcal{C}^0$ or ϕ is surjective.
 - (iii) $\operatorname{Th}(\mathfrak{M}_1) \subseteq \operatorname{Th}(\mathfrak{M}_2)$
 - (iv) $Th(\mathfrak{M}_1) = Th(\mathfrak{M}_2)$, provided that ϕ is injective.

Proof:

5.1.15 (Proposition) Combinatory algebras (except the trivial one) are

- (i) never commutative
- (ii) never associative
- (iii) never finite
- (iv) never recursive

Proof:

5.2 Lambda Algebras and Lambda Models

Since in a combinatory algebra $\mathfrak A$ abstraction can be simulated by k and s, it is possible to interpret λ -terms in $\mathfrak A$.

(Notation) Let C be a set of constants. $\Lambda(C)$ is the set λ -terms possibly containing constants from C. The λ -calculus axioms and rules extend in the obvious way to equations M = N with $M, N \in \Lambda(C)$. For these M, N we still write $\lambda \vdash M = N$. If \mathfrak{M} is an applicative structure, then $\Lambda(\mathfrak{M})$ is $\Lambda(\{c_a | a \in \mathfrak{M}\})$.

- **5.2.1** (Definition) Let \mathfrak{M} be a combinatory algebra.
 - (i) Define maps

$$CL:\Lambda(\mathfrak{M}) \to \mathscr{T}(\mathfrak{M})$$

$$\Lambda: \mathscr{T}(\mathfrak{M}) \to \Lambda(\mathfrak{M})$$

Consider the definition in the middle of page 92.

For $M, N \in \Lambda(\mathfrak{M})$ one defines

$$\lceil M \rfloor_o^{\mathfrak{M}} = \lceil M_{CL} \rfloor_o^{\mathfrak{M}}$$

$$\mathfrak{M}, \rho \models M = N \Leftrightarrow \lceil M \rfloor_{\varrho}^{\mathfrak{M}} = \lceil N \rfloor_{\varrho}^{\mathfrak{M}}$$

$$\mathfrak{M} \models M = N \Leftrightarrow \mathfrak{M}, \rho \models M = N \text{ for all } \rho$$

If \mathfrak{M} is a combinatory algebra and $a \in \mathfrak{M}$, then we write (for example) $\lambda x.xa$ for $[\lambda x.c_a]^{\mathfrak{A}}$.

Also, not all equations provable in λ -calculus are true in every combinatory algebra. For example, if \mathfrak{M} is the term model of CL, then

$$\mathfrak{M} \nvDash \lambda z. (\lambda x. x) z = \lambda z. z$$

since
$$((\lambda z.(\lambda x.x)z)_C L \equiv S(KI)I$$
 and $(\lambda z.z)_C L \equiv I$; but $\lambda \vdash \lambda z(\lambda x.x)z = \lambda z.z$

5.2.2 (Definition) (i) A combinatory algebra \mathfrak{M} is called a λ -algebra if for all $A, B \in (T)(\mathfrak{M})$

$$\lambda \vdash A_{\lambda} = B_{\lambda} \Rightarrow \mathfrak{M} \vDash A = B$$

(ii) A λ -algebra homomorphism is just a combinatory algebra homomorphism.

5.2.3 (Lemma) Let $\mathfrak M$ be a combinatory algebra. Then $\mathfrak M$ is a λ -algebra iff for all $M,N\in\Lambda(\mathfrak M)$

1.
$$\lambda \vdash M = N \Rightarrow \mathfrak{M} \models M = N$$

2.
$$\mathfrak{M} \models K_{\lambda,CL} = K$$
, $\mathfrak{M} \models S_{\lambda,CL} = S$

Proof:

5.2.4 (Proposition) (i) $\phi: \mathfrak{M}_1 \to \mathfrak{M}_2$, then $\phi \lceil M \rfloor_{\rho}^{\mathfrak{M}_1} = \lceil \phi(\mathfrak{M}) \rfloor_{\phi \circ \rho}^{\mathfrak{M}_2}$, for $M \in \Lambda(\mathfrak{M})$. In particular $\phi \lceil M \rceil_{\mathfrak{M}_1}^{\mathfrak{M}_1} = \lceil M \rceil_{\mathfrak{M}_2}^{\mathfrak{M}_2}$ for $M \in \Lambda^0$.

- (ii) Let $\mathfrak{M}_1 \to \mathfrak{M}_2$. Then $\operatorname{Th}(\mathfrak{M}_1) \subseteq \operatorname{Th}(\mathfrak{M}_2)$. Thus if \mathfrak{M}_1 is a λ -algebra, so is \mathfrak{M}_2
- (iii) $\mathfrak{M}_1 \hookrightarrow \mathfrak{M}_2 \Rightarrow \operatorname{Th}(\mathfrak{M}_1) = \operatorname{Th}(\mathfrak{M}_2)$

Proof: By proposition 5.1.14.

By using Curry's combinatory axioms A_{β} one can axiomatize the class of λ -algebras.

5.2.5 (Theorem)

5.2.6 (Definition) Let \mathfrak{M} be a combinatory algebra. \mathfrak{M} is called weakly extensional is for $A, B \in \mathscr{T}(\mathfrak{M})$

$$\mathfrak{M} \models \forall (A = B) \rightarrow \lambda x.A = \lambda x.B$$

The condition of weak extensionality us rather syntactical. Meyer [1980] and Scott [1980] replace it with the following:

- **5.2.7** (Definition) (i) In a combinatory algebra define 1 = S(KI)
 - (ii) A λ -model is a λ -algebra $\mathfrak M$ such that the following Meyer-Scott axiom holds in $\mathfrak M$

$$\forall x(ax = bx) \rightarrow 1a = 1b$$

5.2.8 (Lemma) Let ${\mathfrak M}$ be a combinatory algebra. Then in ${\mathfrak M}$

(i)
$$1ab = ab$$

If moreover \mathfrak{M} is a λ -algebra, then

- (ii) $1 = \lambda xy.xy$, hence $1a = \lambda y.ay$
- (iii) $1(\lambda x.A) = \lambda x.A$, for all $A \in \mathcal{T}(\mathfrak{M})$
- (iv) 11 = 1

Proof:

5.2.9 (Proposition) $\mathfrak M$ is a λ -model iff $\mathfrak M$ is a weakly extensional λ -algebra. *Proof*:

5.2.10 (Proposition) Let \mathfrak{M} be a λ -algebra. Then

 \mathfrak{M} is extensional iff \mathfrak{M} is weakly extensional and satisfies I=1

Proof:

Terms models, interiors

5.2.11 (Definition) Let $\mathscr T$ be a λ -theory

(i) Define

$$M =_{\mathscr{T}} N \Leftrightarrow \mathscr{T} \vdash M = N$$
 (This is a congruence relation on Λ)

$$[M]_{\mathscr{T}} = \{ N \in \Lambda | M =_{\mathscr{T}} N \}$$

$$\Lambda/\mathscr{T} = \{[M]_{\mathscr{T}} | M \in \Lambda\}$$

$$[M]_{\mathscr{T}} \cdot [N]_{\mathscr{T}} = [MN]_{\mathscr{T}}$$
 (This is well-defined)

The the open model of \mathcal{T} is

$$\mathfrak{M}(\mathscr{T}) = \langle \Lambda/\mathscr{T}, \cdot, [K]_{\mathscr{T}}, [S]_{\mathscr{T}} \rangle$$

(ii) By restricting everything to closed terms one defines the closed term model of \mathcal{T}

$$\mathfrak{M}^0(\mathscr{T}) = \langle \Lambda^0/\mathscr{T}, \cdot, [K]^0_\mathscr{T}, [S]^0_\mathscr{T} \rangle$$

Clearly if \mathscr{T} is consistent (i.e., doesn't prove every equation), then $\mathscr{T} \nvDash K = S$, so $\mathfrak{M}(\mathscr{T})$ and $\mathfrak{M}^0(\mathscr{T})$ are nontrivial. In particular $\mathfrak{M}(\lambda)$ and $\mathfrak{M}^0(\lambda)$ are nontrivial since they follow from the Church-Rosser Theorem that the theory λ is consistent.

5.2.12 (Proposition) Let \mathscr{T} be an extension of λ -calculus and let \mathfrak{M} be $\mathfrak{M}(\mathscr{T})$ or $\mathfrak{M}^0(\mathscr{T})$.

(i) For
$$M$$
 with $\mathrm{FV}(M) = \{x_1, \ldots, x_n\}$ and ρ with $\rho(x_i) = [P_i]_{\mathscr{T}}^{(0)}$ one has
$$\lceil M \rfloor_{n}^{\mathfrak{M}} = [M[\vec{x} := \vec{P}]]_{\mathscr{T}}^{(0)}$$

(ii) $\mathfrak{M}(\mathscr{T})$ is a λ -model.

where $[\vec{x} := \vec{P}]$ denotes simultaneous substitution (refer to exercise 2.4.8)

(ii)
$$\mathscr{T} \vdash M = N \Rightarrow \mathfrak{M} \models M = N$$

(iii) $\mathscr{T} \vdash M = N \Leftrightarrow \mathfrak{M} \models M = N$, provided that $\mathfrak{M} = \mathfrak{M}(\mathscr{T})$ or that M, N are closed.

Proof:

5.2.13 (Corollary) (i) $\mathfrak{M}^{0}(\mathcal{T})$ is a λ -algebra.

Proof:

- 5.2.14 (Definition) Let \mathfrak{A} be a combinatory algebra.
 - (i) The *interior* of \mathfrak{A} (denoted by \mathfrak{A}^0), is the substructure of \mathfrak{A} generated by k,s
 - (ii) \mathfrak{A} is hard $\mathfrak{A}^0 = \mathfrak{A}$

Note that up to isomorphism $\mathfrak{M}^{0}(\mathscr{T})$ is the interior of $\mathfrak{M}(\mathscr{T})$

 $\bf 5.2.15$ (Proposition) Let ${\mathfrak A}$ be a $\lambda\text{-algebra}.$

$$\mathfrak{M}^0(\mathrm{Th}(\mathfrak{A})) \cong \mathfrak{A}^0$$

Let $Th(\mathfrak{A}.) = \{M = N | M, N \in \mathscr{T}(\mathfrak{A}), M, N \text{ closed and } \mathfrak{A} \models M = N \}$. Then $\mathfrak{M}^0(Th(\mathfrak{A}.) \cong \mathfrak{A}$ Proof:

- **5.2.16** (Proposition) (i) (Barendregt, Koymans [1980]) Every λ -algebra can be embedded into a λ -model.
 - (ii) (Meyer [1982]) Every λ -algebra is the homomorphic image of a λ -model.

Proof:

- **5.2.17** (Theorem) (i) There is a λ -model that cannot be embedded into an extensional λ -model.
 - (ii) There is a combinatory complete applicative structure that cannot be made into a λ -algebra (by choosing k, s)
 - (iii) There is a $\pmb{\lambda}\text{-algebra}$ that cannot be made into a $\pmb{\lambda}\text{-model}$ (by changing $\pmb{k},\pmb{s})$
 - (iv) There is a λ -model that cannot be made into an extensional one (by collapsing it)

Proof. Refer to Barendregt, Koymans [1980].

- **5.2.18** (Theorem) Let $M, N \in \Lambda$. Then
 - (i) $\lambda \vdash M = N \Leftrightarrow M = N$ is true in all λ -models (or λ -algebras)
 - (ii) Let \mathcal{T} be an ectension of the λ -calculus. Then

 $\mathscr{T} \vdash M = N \Leftrightarrow M = N$ is true in all λ -models satisfying \mathscr{T}

(iii) Let $(\lambda)_c$ be the classical first order theory axiomatized by the universal closure of

$$Kxy = x$$

$$Sxyz = xz(yz)$$

$$K \neq S$$

$$\forall x(ax = bx) \rightarrow 1a = 1b$$

Then

$$(\lambda)_c dash M = N \Leftrightarrow \lambda dash M = N$$
 Proof:

Models and Rules

 $A_{oldsymbol{eta}}$