Mathematical Logic IV
The Lambda Calculus; by H.P. Barendregt(1984)
Part One: Chapters 1-5

1 Introduction

The A-calculus (a theory denoted A) is a type free theory about functions as rules, rather that as graphs {i.e. sets of
n-tuples} in order to stress their computational aspects. This way of thinking about functions (as rules) involves the
basic idea of a function where given certain input the function will, in some sense, generate an output. It seems to
me that this is our intutive notion of a function, where a function is a specified "way” of getting something (output)
from something (input) as opposed to merely being a set of n-tuples.

A function is a Tule of correspondence by which when
anything is given (as argument) another thing (the value
of the function for that argument) may be obtained.
That is, a function is an operation which may be applied
on one thing (the argument) to yield another thing (the
value of the function). !

Application is a primitive operation in A-calculus. The function f applied to a is denoted by fa.

Abstraction is a sort of generalization over functions. Let ¢(= t(x)) be an expression possibly containing x. Then
Az.t(x) is the function f that assigns to the argument a the value ¢(a). That is,

(B)  Qzt(z))a =t(a)

Think of this as something like the following: Az.t(x) is the function that applies a given argument (in this case a)
to the function ¢ only and yields the value t(a) (i.e., It "substitutes” a in for all of the bound «’s in ¢).

The theory A has as terms the set A (A — terms) built up from variables using application and abstraction. The
statements of A are equations between the terms in A. Also A has as its only mathematical axioms the scheme ().

2 Conversion

2.1 M-terms and conversion

The principle object of study in the A-calculus is the set of lambda terms modulo convertibility™**.

2.1.1 (Definition) (i) Lambda terms are words over the following alphabet:

V9, V1, - - - variables
A abstractor
(,) parentheses

(ii) The set of A-terms, A, is defined inductively as follows:

(1) z € A, z is arbitrary
(2) M € A = (AxM) € A, x is arbitrary
3y M, Ne A= (MN)e A

2.1.2 (Notation) (i) M, N, L, ... denote arbitrary A-terms.
(ii) =, y, 2, ... denote arbitrary variables.
(iii) Outermost parentheses are not written.
(iv) The symbol = denotes syntactic equality (i.e., have the same form).

2.1.3 (more Notation) (i) Let & = z1, ..., Z,.
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Then Azy - x,.M = AE.M = Az1(Aza(- - Az, (M)) .. .))
Let N=Ny,...,N,.

Then MNy -+~ Ny = MN = (--- (MNy)Ny) - - Ny,)
(association to the left)

(iii) || M || is the length of M (i.e., the number of symbols in M).

The substitution operator,
M|z := N] denotes the result of substituting N for z in M.

The basic eqivalence relation on A-terms is that of convertibility, which will be generated by axioms.

2.1.4 (Definition) The theory A has as formulas
M=N

where M, N € A and is axiomatized by the following axioms and rules:
1) (Ax.M)N = M[z := N, (B-conversion)

1) M=M

.2) M=N=N=M

) M=NN=L=M=1L
H4) M=N=MZ=NZ

.5) M=N=7M=ZN

.6) M =N = X x.M = Xzx.N (rule &)

Provability in A of an equation is denoted by A - M = N or just by M = N. If A+ M = N, then M and
N are called convertible.

Note: A is logic free: it merely consists of equations. Connectives and quantifiers will be used in the informal
metalanguage discussing about .

2.1.6 (Definition) A variable x occurs free in a A-term M if x is not in the scope of Ax; = occurs bound other-
wise. This is the same binding criteria of the usual quanifiers.

2.1.7 (Definition) (i) FV (M) is the set of free variables in M and can be inductively defined as follows:

V(z) = {z}
V (Az.M) =FV(M) — {z}
FV(MN) =FV(M)U FV(N)

(ii)M is closed or a combinator if FV (M) = (.
(iii) A= {M € A | M is closed}
(iv) A7) = {M € A | FV(M)C {7}
(v) A closure of M € A is \@.M, where {Z} =FV (M)
— Note that a closure of M depends upon the order of the 7.

2.1.8 (Defintion) (i) M is subterm of N (denoted by M C N) if M € Sub(N), where Sub(XN), the collection of
subterms of N, is defined inductively as follows:

Sub(z) = {x}

Sub(Az.N7) = Sub(Ny) U {\x.Ny}

Sub(N1N2> = Sub(Nl)U Sub(Ng) @] {NlNQ}

Subterms may occur several times and two subterms are disjoint if they have nome common symbol occurances.
A subterm N of M is active if N occurs as (NZ) C M for some Z; otherwise N is passive.

2.1.9 (Definition) Let F, M € A. Then

(i) FOM = M; F™+'M = F(F"M)



(ii) FM~0 = F; FM~"+! = FM~"M

2.1.11 (Definition) (i) A change of bound variables in M is the replacement of a part Az.N of M by Ay.(N[z :=y]),
where y does not occur (at all) in N. Since y is a fresh variable there is no threat of messing up the binding properties
of the term.

(ii) M is a-congruent with N (denoted by M =, N) if N results from M by a series of changes of bound variables.
2 2.1.12 (Convention) Terms that are a-conguent are identified. So now we can simply write Az.x = \y.y, etc.

2.1.13 (variable Convention) If M;,..., M, occur in a certain mathematical context (e.g. definition, proof, etc),
then in these terms all bound variables are chosen to be different from the free variables.

2.1.15 (Definition) The result of substituting N for the free occurrences of x in M (denoted by M[z := NJ) is
defined as follows:

yle:=Nl=y, ifafy
(. M)[z := N] = My.(My[z := N])
(MyMp)[z := N| = (Mi[z := N])(Mz[z := NJ)
2.1.16 (Substitution Lemma) If z # y and = ¢ FV(L), then
Mz := Ny := L] = M[y := L][z := N[y := L]]
Proof:

2.1.18 (Defintion) (i) A context C[ ] is a term with some holes in it. More formally:

T is a context
[]is a context
if C1[ ] and Cs[ | are contexts then so are C[ |Ca[ ] and A\x.Cq] |

(ii) If C[ ] is a context and M € A, then C[M] denotes the result of placing M in the holes of C[]. In this
act free variables in M may become bound by C[M].

2.1.21 (Defintion) (i) Let N=Ny,...,Np;Z = 21,...,2n. Then N fits in & if m = n and the ¥ do not occur

—

in FV(N).
(i) Let N = Ny,...,Ny; L= Ly, ..., L,. Then
Z\_fzfifn:mandNi:Li forl1 <i<n
N = L is defined similarly.
(iil) Let N fitin £=21,...,2,. Then
MIZ := N] = M[zy := Ny],..., Mz, := N,], where & do not occur in FV(N)

(iv) Let M € A. As in predicate logic sometimes we write M = M (Z), to indicate substitution:
if M = M(Z) and N fits in Z, then M(N) = M[Z := N]

2.1.22 (Lemma) Let & = 21, ...,2,. Then (A\Z.M)Z = M.

2This is similar to Church’s a-conversion which said Az.M = A\y.M[z := y]. The difference is that o conversion is a semantic notion
(notice the use of '=") and a-congruity is a syntactic notion.



Proof:

2.1.24 (Combinatory Completeness) Let M = M (). Then:
(i))3F FZ = M(Z)
(i))3F VN F(N)= M(N), where N fits in &
(iii) In (i), (ii) one can take F' = Az.M

2.1.25 (Definition)
I= \z.z, K = A\ay.x, S= \vyz.xz(yz)
2.1.26 (Corollary) For all M, N, L € A
(1) IM = M
(i) KMN = M
(ili) SMNL = ML(NL)

Lambda terms denote processes. Different terms may denote the same process.

2.1.27 (Definition) (i) Eztensionality is the following derivation rule:

Mx=Nz=M=N (ext)
provided that ¢ FV(MN).

(ii) The theory A extended by this rule is denoted by A+ ext.
The only difference between A and A+ext is that Ax.Mx = M is provable in A+ext and not in A.
2.1.28 (Definition) Consider the folloing axiom scheme n
Az Mz =M (n-conversion)
provided that  ¢FV(M). An is the theory A extended with 7.
2.1.29 (Theorem) The theories A+ext and An are equivalent.?

2.1.30 (Definition) (i) An equation is a formula of the form M = N with M, N € A; the equation is closed
it M, N € A°.

(ii) Let .7 be a formal theory with equations as formulas. Then .7 is consistent (denoted by Con(.7)) if .7 does not
prove every closed equation. If .7 does prove every closed equation then it is inconsistent.

(iii) If 7 is a set of equations, then A+.7 is the theory obtained from A by adding the equations of 7 as ax-
ioms. 7 is called consistent if Con(A+.7).

2.1.31 (Fact) The theories XA and An are consistent.?

2.1.32 (Definition) Let M, N € A. Then M and N are incompatible (denoted by M#N), if =Con(M = N).

3Theorem 2.1.29 is attributed to Curry. Also, the extensional A-calculus is usually denoted by An.
4The theory X extended by a single axiom may become inconsistent.



Normal Forms
Consider a term like

(Az.za)l
This term can be computed to yield
Ia
and gives
a
The term a is called a normal form, for it does not ”compute” any further.
2.1.34 (Definition) Let M € A.
(i) M is a B-normal form (abbreviated by B-nf or just nf) if M has no subterm (Az.R)L
(i) M has a B-nf if there exists an IV such that N = M and N is a 3-nf.’
2.1.35 (Definition) Let M € A.
(i) M is a Bn-nf if M has no subterm (Az.P)Q or (Az.Rx) with z ¢FV(R).
(ii) M has a Bn-nf if
AN[An+F M = N and N is a Bn-nf]
2.1.36 (Fact) M has a Bn-nf <& M has a B-nf.%
2.1.37 (Fact) (i) If M, N are different B-nf’s, then
A¥FM=N
(ii) Similarly for Bn-nf’s and provability in An.
2.1.38 (Corollary) The Theories A and An are consistent.
2.1.39 (Fact) If M, N are different Bn-nf’s, then M#N."

2.1.40 (Theorem) Suppose M, N have a nf. Then either Ant- M = N or An+M = N is inconsisten.

3 Reduction

There is a certain asymmetry in the defining equation for A-abstraction. The statement
Az.z2 4+ 1)3 =10

can be interpreted as "10 is the result of computing (Az.x? + 1)3” (i.e., 10 is the result of the function applying 3
to the function &2 + 1). This computational aspect will be expressed by writing

Az.z2+1)3 — 10
which reads ” (Az.x? + 1)3 reduces to 10.”

5If M is a nf, then it is also said to be in nf.
6Curry et al. [1972]
"Bshm [1968)]



The Church-Rosser theorem says that if two terms are convertible, then there is a term to which they both re-
duce. In many cases the inconvertibility of two terms can be proved by showing that they don’t reduce to a common
term.

3.1 Notions of Reduction
3.1.1 (Definition) (i) A binary relation R on A is compatible (with the operations) if
(M,M’) € R= (ZM,ZM’) € R, (MZ,M'Z) € R and (Az.M,  \z.M’) € R

forall M,M', Z € A.
(ii) An equality (or congruence) relation on A is a compatible equivalence relation.
(iii) A reduction relation on A is one which is compatible, reflexive, and transitive.

Note: A relation R C A2 is compatible if
(M,M’) e R= (C[M],C[M’']) € R
for all M, M’ € A and all contexts C[ ], with one hole.

3.1.2 (Definition) (i) A notion of reduction on A is a just a binary relation R on A.
ii) If Ry, Ro are notions of reduction, then Ry R2 is R1URx.

3.1.3 (Definition) 8 = {((Ax.M)N, M[z := N]) | M, N € A}.

3.1.4 (Definition) If > is a binary relation on a set X, then the reflexive closure of > (denoted by =) is the
least relation extending R that is reflexive. The transitive closure (denoted by »=*) and the compatible closure are
defined similarly.

3.1.5 (Defintion) Let R be a notion of reduction on A.
(i) Then R induces the binary realations

— g one step R-reduction
—»r R-reduction
=g R-equality (also called R-convertibility)

inductively defined as follows. — g is the compatible closure of R:

(1H)(M,N)e R= M —r N
2)M —-r N = ZM —r ZN
B M—-g N = MZ—>gNZ
4 M —-rgp N = Axx.M - Ax.N
—» g is the reflexive, transitive closure of —g:

(1)M—>RN = M —»gr N
(2)M—»RM
(3)M*»RN,N*»RL = M —»gr L

=g is the equivalence relation generated by — g:
(l)M—»RN = M =»g N
(2)M=RN = N=pM
(3)M:RN,N:RL = M =g L

(ii) The basic relations derived from R are pronounced as follows:



M —»gr N: M R-reduces to N or N is an R-reduct of M
M —pgr N: M R-reduces to N in one step
M =r N: M is R-convertible to N

The relations — g, »gr, and =g are introduced inductively. Therefore properties about these relations can be
proved inductively.

3.1.6 (Lemma) The relations —g, —»g, and =g are all compatible. Therefore, - is a reduction relation and

=g is an equality relation.
Proof:

3.1.7 (Remarks) By the compatibility of — g it follows (by induction on the structure M) that
N »gp N’ = M[x := N]| »g Mz := N’]

(ii) The notion of compatible relation can be generalized directly to any set X with some operations on it. We can
then speak of equality and reduction relations.

(iii) Notions of reduction will be denoted by boldface letters; e.g. B3, m, Q. The derived relations will be writ-
ten using the corresponding lightface symbols; e.g. —g, g, etc.

For the remainder of the section R is a notion of reduction on A.

3.1.8 (Definition) (i) An R-redex is a term M such that (M, N) € R for some term N. In this case N is called an
R-contractum of M.

(ii) A term M is called an R-normal form (R-nf) if M does not contain (as subterm) any R-redez.
(iii) A term N is an R-nf of M (or M has the R-nf N) if N is an R-nfand M =g N.

The process of stepping from a redex to a contractum is called contraction.

3.1.9 (Lemma)

3.1.10 (Corollary)

3.1.11 (Definition) (i) Let > be a binary relation on A. Then > satisfies the diamond property (denoted by
-k O) if

VM, My, M, [M =My, N M > My = 3M3[M1 = Mz N My > M3]]
see figure 3.1 (p. 54)

(iii) A notion of reduction R is said to be Church-Rosser (CR) if — g satisfies the diamond property.

3.1.12 (Theorem)

3.1.13 (Corollary)



3.1.14 (Definition) A binary relation R on A is substitutive if for all M, N, L € A and all variables x one has
(M,N)e R= (M[x:=L],Nz:=L]) € R
3.1.15 (Proposition)

3.1.16 (Proposition)

3.1.17 (Definition) (i) Let A be a subterm occurrence of M, that is, M = C[A]. Write

M, N
if A is an R-redex with contractum A’ and N = C[A’].
(ii) A R-reduction (path) is a finite or infinite sequence

M() ﬁJ>‘R.Z\4'1 i1>‘R.Z\4-2 R e
3.1.18 (Conventions) (i) o, T,... range over reduction paths.
(ii) The reduction path o in definition 3.1.17(ii) starts with Mp. If there is a last term M, in o, the o ends
with M,,. In that case one also says that o is a reduction path from My to M,. If n = 0, then o is called
the empty reduction (denoted by @ : Mgy —gr Mp). If n 7# 0, then o is a proper R-reduction (denoted by
(o:) Mo »rM,,.

#0

(iii) Sometimes the Ag, A7 are left out in denoting a reduction path.
(iv) We often write o : Mg — M; — ... to indicate that o is the path Mg — M7 — ...
Wlfo:My—...— M, and 7 : M,, — M,,, then

o+7:My— ... - M, —...— M,

(vi) If A is an R-redux occurrence in M with contractum A’ then (A) denotes the one step reduction M = rN.
That is,

(A) : C[A] 55 ClA]

(vii) If o is a R-reduction path, then || o || is its length (i.e., the number of —pg steps in it). Note that
| o ll€e NU {oc}.

3.1.20 (Definition) The R(reduction) graph of a term M (denoted by Gr(M)) is the set
{NeA|M-—gN}

directed by — g: if several redexes give rise to My — g M7, then that many directed arcs connect My to M in
Gr(M).



3.1.22 (Definition) Let M € A.

(i) M R-strongly normalizes (denoted by R-SN(M)) if there is no infinite R-reduction starting with M.
(ii) M is R-infinite (denoted by R — oo(M)) if not R-SN(M).

(iii) R is strongly normalizing (SN) if VM € A R-SN(M).

3.1.23 (Fact)

3.1.24 (Definition) (i) A binary relation > (on a set X)) satisfies the weak diamond property if
Vo, x1, 2[x = 1 Az > 2 = Jxs[ry & T3 N\ To % x3]]

where > is the transitive reflexive closure of ».

(ii) A notion of reduction R is weakly Church-Rosser (WRC) if — g satisfies the weak diamond property.

3.1.25 (Proposition)

3.1.26 (Notation) (i) R-NF = {M € A | M is in R-nf}, R-NF° = R-NF n A°.

(ii) If X C A, then M € X iff M’/ =g M for some M’ € X.
In this notation, M €g B-NF iff M has a (-nf.

3.1.27 (Definition) (i) M € A° is R-solvable if JPe A MP=x I.
(ii) M € A is R-solvable if some closed substitution instance of M is R-solvable.

3.2 Beta Reduction
3.2.1 (Proposition)

3.2.2 (Lemma)

3.2.3 (Definition) Define a binary relation -»on A inductively as follows:
M »M
M 5> M = Az.M »Az. M’

M »M',N »N’ = MN —M'N’



M 5>M',N »N' = (Az. M)N »M'[xz := N’|

3.2.4 (Lemma)

3.2.5 (Lemma)

3.2.6 (Lemma)

3.2.7 (Lemma)

3.2.8 (Theorem) The Church-Rosser Theorem (CR)
(i) B is CR.

(II)M:ﬁN:HZ[M*»g Z/\Ng»g Z]

3.2.9 (Corollary)

3.2.10 (Theorem)

3.2.11 (Convention) The notion of reduction B will be used throughout this book. Therefore, to simplify nota-
tion the subscripts will be suppressed. That is

—g, —g, Gg(M), B-NF, B — oco(M) and B-solvable
will be denoted by
—, —», G(M), NF, oo(M) and solvable.
Note: The notation €g will NOT be replaced by €.

3.3 Eta Reduction
3.3.1 (Definition) (i) m:Ax.Mx — M provided x ¢ FV(M); that is p = {(Ae. Mz, M) | x ¢ FV(M)}

(i) Bn =BUn

10



The point of Bn-reduction is that it axiomatizes provable equality in the extensional A-calculus and it is CR.

3.3.2 (Proposition)

3.3.3 (Proposition)

3.3.4 (Definition) Let >3 and >z be two binary relations on the set X. Then 7 and 2 commute if
‘v’w, Tr1,T2 c X[m -1 1 Nx 2 Loy = 3:133[%1 2 I3 VAN T2 ™1 583]]

see figure 3.6 (page 64)

Note: == < iff > commutes with itself.

3.3.5 (Proposition)

3.3.6 (Lemma)

3.3.7 (Lemma)

3.3.8 (Lemma)

3.3.9 (Theorem)

3.3.10 (Corollary)

3.3.11 (Theorem)

3.3.12 (Proposition)

11



4 Theories
4.1 Lambda Theories

Lambda theories are consistent extensions of the A-calculus that are closed under derivations. They are studied
because of their own interest and because of their application to ordinary A-conversion.

Remember that a (closed) equation is a formula of the form M=N, with M, N € A°. If .7 is a set of equations,
then the theory A is obtained by adding to the axioms and rules of the A-calculus the equations in .7 as new axioms.

4.1.1 (Definition) Let .7 be a set of closed equations.
T is the set of closed equations provable in A4.7.
T is a A-theory if 7 is consistent and I+ = 7.
By corollary 2.1.38 both A and An are A-theories.
4.1.2 (Remarks) (i) Since the rules £ is in A, each A-theory .7 is closed under £ and hence
IFM=N%&JFAx.M = Azx.N.
The <= follows since (Az.M)xz = M in 7.
(ii) By (i) it follows that it does not matter to resrict ourselves in 4.1.1 to sets of closed equations.
(ili) Clearly Con(J)<> A+ T =F.
(iv) Each A-theory is identified with the set of closed equations provable in it. In particular,

A= {M = N|M,N € A° and A\ M = N}.

4.1.3 (Proposition) Let .7 be a A-theory. Then
(i) M=M= 7 +C[M] = C[M’]
(i) IM=M', 7+ N=N'"=JF M[x:= N]=M'[z:= N’'|
Proof: (i) By induction on the structure of C[ |.
(ii) Assume J = M = M’. Then by (i) 7 F (Ax.M)N = X.M’)N hence
Ik M[x := N| = M'[x := N'].
If moreover J = N = N, then by (i) 7 F+ M'[x := N]| = M'[x := N’] and we’re done.
4.1.4 (Notation) Let 7 be a theory.
(i) J B M = N stands for A+.7 = M = N this is also written as M =5 N.
(i) Z + M = N stands for (7 U {M = N})+.
(iii) Zn stands for (An+.7)T.
(iv) If 7 = ()T, then 7 is said to be axiomatized by .
(v) Write « € M if VN =5 M, x € FV(N).
(vi) M €7 X if AN =5 M, N € X.
(vii) 1 = Azy.zy (Church’s numeral 1)

4.1.5 (Lemma) For a A-theory 7 one has In= 7+ (I =1).
Proof:

12



Note: An important A-theory is obtained following the proposal 2.2.14 to identify unsolvable terms.
4.1.6 (Definition) (i) # = {M = N|M, N € A°, unsolvable}
(ii) # = A"

4.1.7 (Definition) Let .7 be a t A-theory.
(i) 7 is r.e. if after coding 7 is a recursively enumerable set of integers.

(il) 7 is sensible if & C 7.

(iil) 7 is semi sensible (s.s.) if 7 does not equate a solvable and an unsolvable term.
Note: Both A and An are r.e. and s.s. (the latter will be proved in §17.1).

4.1.8 (Lemma) (i) Let K be a fixed point of K. Then I = # K®°.
(ii) (Jacopini [1975]) Let wg = Azx.xxzx and Q3 = wsws. Then I #5053.
Proof: (i) First note that K = KK =K. Hence
I=K*FM=IM =K*M =K* =K*N =IN=N.
(ii) Note that Q3 = waws = wawsws = N3zws. Hence
I=0Q3FH1=Q3 = Q3w3z = Iwz = ws.

Since I and w3 are different Bn-nf’s, one has by Bohm’s theorem for AI, theorem 10.5.31, that I #jws. Hence we're
done.

4.19 (Corollary) .7 sensible = .7 semi sensible.

Proof:

Rules

The rule of extensionality (ext) and the rule & from chapter two. Plus:

4.1.10 (Definition) (i) The w-rule is
w:VZeA°MZ=NZ=M-=N

(ii) The term rule is
tr:VZ € A°MZ = NZ = Mx = Nz, for arbitrary x.

4.1.11 (Definition) Let .7 be a A-theory.
(i)  is closed under the w-rule notation 7 F w if

VZeEAN® T+-MZ=NZ=9+M=N
(ii) Similarly one defines 7 + R for the other rules. Note that by definition, for every A-theory 7 one has 7 + &

(i) 7 is extensional if T + ext.

13



4.1.12 (Lemma) (i) S Fw & T Ftr and T F ext

(i) Thrertes ITHI=19=9=9n.
Proof:

4.1.13 (Notation) For a A-theory mathscrT and a rule R let 7 + R of R be
{M =N|M,NeA®and A\ +R+ J + M = N}
in the obvious sense.
In general 7 R does not need to be a A-theory; corollary 15.3.7 shows that - Con(.9n) for some A-theory 7.
4.1.14 (Definition) Let R® be the rule R restricted to closed terms. E.g. ext is
Fx =F'z,F,F' €¢ A°andx ¢ FV(FF') = F = F’
4.1.15 (Proposition) Let .7 be a A-theory. Then
(i) (Hindley and Longo [1980]) 7 + w°® & T+ w
i) T Htr° < T tr
(ili) 7 F ext® % 7 | ext.

Proof:

Term Models
Term models consist of the set of closed A-terms modulo some A-theory .7 and reflect the properties of such a theory.
4.1.16 (Definition) (i) A combinatory algebra is a structure
M = (X, k,s)
such that the Card(X) > 1 and kzy = =z, szyz = xz(yz) are valid in 2.
Moreover such a structure is extensional if in 9T
Ve ax =bx) — a=0»>

4.1.17 (Definition) Let .7 be a A-theory.
(i) The (open) term model of J is the structure

QJI(Lg) = <A/ =T [K]ﬂa [S]7>
where for M, N € A
M=sN&JFM-=N

[M]7 ={N € AJM =5 N}
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A/ =7 ={[M]7|M € A}
[M]7 - [N]7 = [MN]~
(ii) Similarly one defines the closed term model

M(7) = (A°/ =7,+[K]7, [S]7)

4.1.18 (Proposition) Let .7 be a A-theory. Then
(i) M(F) and MO (F) are combinatory algebras.
(ii) T F ext < M(T) is extensional.

(iii) 7 F w < MO(.7) is extensional.
Proof:

Remark: In general
T+ ext HMO(T) is extensional.

This is so because An - ext but not w.

4.1.19 (Definition)(i) Let .7 be a A-theory. Then the canonical map
d7: A — IM(T) is defined by ¢ (9M) = [M] »
(ii) If 71, To are A-theories with 73 C 95, then the canonical map
Pz M(7A) — IM(F) is defined by 7, 7, ([M]5) = [M] 2,
(iii) Similarly one defines canonical maps

$% : A° — MO(T) and ¢%, 5, : MO(F) — MO(%)

4.1.20 (Lemma)

Lambda theories are non degenerate congruence relations on 2¥(A).

Completeness of theories

4.1.22 (Definition) An equational theory & is called Hilbert Post (HP)- complete if for every equation M = N in
the language of

T+ M =N or .7+ (M = N) is consistent.
The notion applies to particular A-theories. HP-complete theories correspond to maximally consistent theories

in first order model theory. Although, if 2 is a first order structure then Th(2() is maximally consistent. But if 9t
is, say, a combinatory algebra, then
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Th(M)= {M = N|9t F M = N, M, N € A°}
is not necessarily complete. For example, Th(9T(A)) =X and this theory has many proper extensions.

By Zorn’s lemma every A-theory can be extended to a HP-complete one.

5 Models

INTRODUCTORY STUFF!

5.1 Combinatory Algebras
5.1.1 (Definition) (i) M = (X, -) is an applicative structure if - is a binary operation on X.

(ii) Such a structure is extensional if for a,b € X one has

VMreXa-x=b-z)=a=0b

Notation: (i) As in algebra, a-b is usually written ab. If b = by, ..., by, then ab = aby,...,b, = (... ((ab1)bs)...by)

(i) If 2t = (X, -) then we write @ € 2N instead of @ € X.

5.1.2 (Definition) Let 9t be an applicative structure
(i) The set of terms over M (denoted by 7 (9N)) is inductively defined as follows

Vo, V1, V2,... € T (M), (variables)

a EM = ¢, € T(M), (constants)

A,B € 7(9M) = (AB) € 7 (M)

Notation: A, B ... denote arbitrary terms and x,y, ... arbitrary variables in .7 (901)
(ii) a valuation in MY is a map p: variables — M. For a valuation p in ML the interpretation of A € T (M)

in Mt under p (denoted by (A)ZJK or (A), or (A)™ if M or p is clear from the context)
is inductively defined as usual:

()7 = p(x)
(ca)y' =a
(AB)™ = (A)(B)T
(iii) A = B us true in M under the valuation p (denoted by M, p F A = B) if (A)g” = (B)zﬁ.
(iv) A = B is true in 91 (denoted by Mt E A = B) if M, p = A = B for all valuations p.
(v) The relation F is also used for first order formulas over 9t. The definition is as usual.
Remember that when evaluating a formula, the free variables of that formula are dependent on the interpreta-

tion, p.
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5.1.3 (Definition) (Due to Curry) An applicative structure 9% is a combinatory complete if for every A € 7 (9N)
and Z1,..., 2z, with FV(A)C {z1, — ,xN} one has ion M

Af Ve1,...5Ty = A
Note that an extensional applicative structure is combinatory complete iff for all A € 7 (1) one has

Jf VEFE = A(T)

5.1.4 (Notation) Intuitive. . .

5.1.5 (Lemma) Let 91 be an applicative structure and A, A’, B, B’ € .7 (M) Then

(i) (Alz := B])p = (A) p(a:=(B),)

(ii)MEFA=A" AN B=B' =Dk Az := B] = A'[x := B’|
Proof:

5.1.6 (Definition) Let 2t = (X, -) be an applicative structure and let ¢ : X™ — X be a map
(i) ¢ is representable over M if
3f € X Vva € ¢(a)
(i) ¢ is algebraic over M if there is a term A € 7 (M) with FV(A) C {x1,...,x,} such that
Va ¢(@) = (A)p@:=a) Note that this is independent of p. Why?
Combinatory completeness says that all algebraic functions are representable. The converse is trivial.
5.1.7 (Definition) A combinatory algebra is an applicative structure 9 = (X, -, k,s) with k and s defined as
usual.
5.1.8 (Definition) Let 9% be a combinatory algebra.
(i) Extend .7 (91) with new constants K and S denoting k and s respectively. Also I = SKK.
(ii)For A = 7 (9N) and a variable x, define A*x.A € .7 (M) inductively as follows
Nxx =1
A*z.P = KP, if P does not contain x
Mz.PQ = S(\*z.P)(A*2.Q)

(iii) Let & = @1,...,&p. Then A*E.A = (A\*z1 ... (A*z,A)...)

5.1.9 (Proposition) Intuitive. . .

17



5.1.10 (Theorem) An applicative structure 99t is combinatory complete iff it can be expanded to a combinatory
algebra (by choosing k, s). Hence every combinatory algebra is combinatory complete. Proof:

5.1.11 (Remarks) Note that a combinatory algebra 9t = (X, -, k, s) is nontrivial (i.e., Card(Mt > 1) iff k # s.
Indeed, k = s implies a = s(ki)(ka)z = k(kt)(ka)z = i for all a, so 91 is trivial. We usually just assume that
what we are dealing with is nontrivial.

5.1.12 (Definition) (i) Let 9M; = (Xi, +i, kiy 8i),2 = 1,2, be combinatory algebras. Then ¢ : X1 — Xj
is a homomorphism (denoted by ¢ : M3 — My) if ¢ preserves application and k and s, i.e. P(x 1 y) =
& () 2 ¢(y), d(k1) = k2, and P(s1) = s2.

(i)9Mt; — My if ¢ : Wy — Wi, for some ¢.

(iii) 90t is embeddable in My (denoted by My + Ma) if ¢ : W3 — M, for some injective ¢.

My is a substructure of My (denoted My C Mz) with ¢ the identity.

(iv)Mty is isomorphic to My (denoted by My = M) if ¢ : My — Mo for some bijective ¢.
5.1.13 (Definition) (i) C is the set of terms of combinatory logic, i.e. applicative terms built up with variables
and K, S only.

C’={P eC|FV(P) =0}
(ii) Let 2% be a combinatory algebra. Then

Th(M) ={P=QMEF P =Q, P,Q €C}

5.1.13 (Proposition) Let ¢ : M3 — M. Then for P,Q € T (M)
(i) ([ P] )gﬁl = [¢P| Z’g‘;ﬁ where ¢(P) results from P by replacing the constants cq by cg(a)-
({H)M; F P =Q = Ms F ¢(P) = ¢(Q), provided P < Q € C° or ¢ is surjective.
(iii) Th(9ty) C Th(Mi2)
(iv) Th(9t1) = Th(M2), provided that ¢ is injective.

Proof:
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5.1.15 (Proposition) Combinatory algebras (except the trivial one) are
(i) never commutative
(ii) never associative
(iil) never finite
(iv) never recursive

Proof:

5.2 Lambda Algebras and Lambda Models

Since in a combinatory algebra A abstraction can be simulated by k and s, it is possible to interpret A-terms in 2A.
(Notation) Let C be a set of constants. A(C) is the set A-terms possibly containing constants from C. The
A-calculus axioms and rules extend in the obvious way to equations M = N with M, N € A(C). For these M, N
we still write A = M = N. If 9t is an applicative structure, then A(D) is A({cq|a € Di}).
5.2.1 (Definition) Let 9% be a combinatory algebra.
(i) Define maps
CL: A(D) — T(9M)
A: T — AN
Consider the definition in the middle of page 92.
For M, N € A(9) one defines
[M]) = [McL]}!
M,pEM =N & fMJgﬁ: [szﬁ
MEM=N&M,pEM = N forall p

If Mt is a combinatory algebra and a € M, then we write (for example) Az.xza for [Az.cq|®.

Also, not all equations provable in A-calculus are true in every combinatory algebra. For example, if 9t is the
term model of C'L, then

M E Az.(Az.x)z = Az.z

since ((Az.(Az.x)z)cL = S(KI)I and (Az.z2)cL = I; but A - Az(Az.x)z = Az.z

5.2.2 (Definition) (i) A combinatory algebra 901 is called a A-algebra if for all A, B € (T)(901)
AFAN=B\=>9tEA=B

(ii) A A-algebra homomorphism is just a combinatory algebra homomorphism.
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5.2.3 (Lemma) Let 9% be a combinatory algebra. Then 9% is a A-algebra iff for all M, N € A(9)
ILAFM=N=9MEM=N
2. M E KycrL = K, ME SxcL =5

Proof:

5.2.4 (Proposition) (i) ¢ : MMy — My, then d)fMJ%nl = fd)(ﬂﬁ)]g;zp, for M € A(MY). In particular
[ M |7 = [M ™2 for M € A°.

(ii) Let My — My, Then Th(MWty) C Th(Mt2). Thus if My is a A-algebra, so is Mo
(iii) 91 & M2 = Th(M1) = Th(M,)

Proof. By proposition 5.1.14.

By using Curry’s combinatory axioms Ag one can axiomatize the class of A-algebras.

5.2.5 (Theorem)

5.2.6 (Definition) Let 2t be a combinatory algebra. St is called weakly extensional is for A, B € 7 (90N)
MEV(A=B) > Axz.A=Az.B
The condition of weak extensionality us rather syntactical. Meyer [1980] and Scott [1980] replace it with the following:
5.2.7 (Definition) (i) In a combinatory algebra define 1 = S(KT)
(ii))A A-model is a A-algebra 9T such that the following Meyer-Scott axiom holds in 9t

Ve(ax = bxr) — la=1b

5.2.8 (Lemma) Let 9% be a combinatory algebra. Then in 9%
(i) 1ab = ab

If moreover 9t is a A-algebra, then
(ii) 1 = Azy.xy, hence 1la = Ay.ay

(iii) 1(Az.A) = Ax. A, for all A € T (M)

(iv) 11 =1
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Proof:

5.2.9 (Proposition) 991 is a A-model iff 9t is a weakly extensional A-algebra.
Proof:

5.2.10 (Proposition) Let 2t be a A-algebra. Then
M1 is extensional iff M is weakly extensional and satisfies I = 1

Proof:

Terms models, interiors
5.2.11 (Definition) Let .7 be a A-theory
(i) Define
M= N&I+-M=N (This is a congruence relation on A)
[M]7 = {N € A|M =5 N}
A/T ={[M]7|M € A}
[M]z «[N]g = [MN]z (This is well-defined)
The the open model of 7 is M(T)=(AN/T,-[K]7,[S]7)
(ii) By restricting everything to closed terms one defines the closed term model of T
M(T) = (A°/ 7, [K]%, [S]5)
Clearly if .7 is consistent (i.e., doesn’t prove every equation), then 7 ¥ K = S, so M(7) and MY () are
nontrivial. In particular M(A) and MO (A) are nontrivial since they follow from the Church-Rosser Theorem that
the theory A is consistent.
5.2.12 (Proposition) Let 7 be an extension of A-calculus and let 9t be M(T) or M(7).
(i) For M with FV(M) = {x1,...,2x,} and p with p(x;) = [Pi](;) one has
[M]Z = [M[& = P
(i) W(.7) is a A-model.
where [# := P] denotes simultaneous substitution (refer to exercise 2.4.8)
(i) FFM=N=99FM=N
(iii) T F M = N & D E M = N, provided that 9t = 91(7) or that M, N are closed.

Proof:
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5.2.13 (Corollary) (i) 9t°(.7) is a A-algebra.

Proof:

5.2.14 (Definition) Let 2 be a combinatory algebra.
(i) The interior of 2 (denoted by 2A°), is the substructure of A generated by k, s
(i) A is hard A° = A
Note that up to isomorphism 91°(.7) is the interior of (7))
5.2.15 (Proposition) Let 2A be a A-algebra.
MO (Th(A)) == A°
Let Th(A.) = {M = N|M,N € (), M, N closed and 2AF M = N}. Then 9%°(Th(.) = A

Proof:

5.2.16 (Proposition) (i) (Barendregt, Koymans [1980]) Every A-algebra can be embedded into a A-model.
(ii) (Meyer [1982]) Every A-algebra is the homomorphic image of a A-model.

Proof:

5.2.17 (Theorem) (i) There is a A-model that cannot be embedded into an extensional A-model.
(ii) There is a combinatory complete applicative structure that cannot be made into a A-algebra (by choosing k, s)
(iii) There is a A-algebra that cannot be made into a A-model (by changing k, s)
(iv) There is a A-model that cannot be made into an extensional one (by collapsing it)

Proof: Refer to Barendregt, Koymans [1980].

5.2.18 (Theorem) Let M, N € A. Then
) AFM =N < M = N is true in all A-models (or A-algebras)

(ii) Let 7 be an ectension of the A-calculus. Then
T EFEM=N < M = N is true in all A-models satisfying .7

(iii) Let ()¢ be the classical first order theory axiomatized by the universal closure of
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Kxy==<x
Sryz = xz(yz)
K#S
Ve(ax = bxr) — la=1b
Ap
Then

NeFM=N<sAFM=N
Proof:

Models and Rules
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