
Outline of a Mathematical Theory of Computation
by Dana Scott (1970)

1 Introduction

Scott is attempting to provide a way of underastanding higher-level computer programs. He, as did Church, makes a
distinction between functions as sets of n-tuples and functions as computations. Where Church went with the latter,
Scott argues that the former is sufficient for understanding the computer languages in question.

The point is that, mathematically speaking, functions are
independent of their means of computation and hence are
”simpler” than the explicitely generated, step-by-step evolved
sequences of operations on representations. 1 (p. 1)

Thus, Scott is attempting to provide a way of understanding computation that leaves out the ”irrelevancies”(i.e.,
the arbitrary choices involved in dealing with functions according to their computational definitions) of operational
semantics.

However, Scott does realize that the approach argued for above is simply an argument for an approach that
accomodates human understanding of computation and that the operational approach must not be ignored because,
as he points out, the machines that the programs of study run on are not capable of dealing with such an abstract
level of understanding. That is, the computaional approach should not be abandoned because the machines that we
build operate on that lower level.

Therefore, a mathematical semantics, which will represent the
first major segment of the complete, rigorous definition of a
programming language, must lead naturally to an operational simulation
of the abstract entities, which (if done properly) will establish
the practicality of the language, and which is necessary for a full
presentation. (p. 2)

Consider functions, Scott states that functions defined mathematically can be known to be computable without
knowing how to do the computation. However, ”knowledge” of a function not only includes the abstract mathemat-
ical definition, but also its operational definition. That is, we must not simply know that a function is computable
but also how to compute them (given input).

The point of this paper, is to provide a theory that accounts for the aforementioned abstractions. He points out
that the operational approach has been used for some time (compilers are evidence for such understanding).

[T]he essential point : unless there is a prior, generally
accepted mathematical language at hand, who is to say whether a
proposed implementation is correct? 2 (p. 2)

1By ’representation’, Scott means that which stands for the information being functionally studdied (i.e., data).
2Notice that compliers do not provide us with such definitions for a particular language because there can be many compilers for that

language

1



He points out that those who write compilers should have clear understanding of the language they are writing
the compiler for and Scott’s point is to say that that understanding should be made explicit. Why? So that such
abstract entities can be ”manipulated in the familiar mathematical manner.”

Personal remark: It seems as though Scott has backed off of his ”essential point.” That is, the question he raises
in making that point seems to be a definite problem for the operational approach. But later in that paragraph, when
he brings up the point about compiler writers providing the standard (or at least having some sort of understanding
of the standard), he seems to back off the implication that his mathematical approach will provide the standard for
determining whether a program is correct and it appears that he is simply willing to claim that his approach is just
mathematically interesting. That is, his approach doesn’t set the standard it only makes the standard (hidden inside
the heads of copiler writers) ”visible” and that the reason why we should adopt his approach is only because it is of
mathematical interest. Perhaps not. . .perhaps it is only vague language that I’m nit-picking on. We’ll have to see
if this vagueness continues as we go.

2 The Problem of Self-Application

When thinking about programming languages in this way we must have a new way of thinking about data types and
the functions (i.e., mappings) that are to be allowed from one to another.

Since, a function can be in itself an infinite object (ex. a mapping from integers to integers) we must introduce
some idea of approximation to deal with the finite nature of the machines (just as we do with real numbers).

Also, there exist operationally defined functions for which there is no mathematical counterpart. In particular it is
”not unknown” in programming languages to allow unrestricted procedures which can very well produce unrestricted
procedures as values. I’m assuming that by ’unrestricted’ he means a function that is self-applicative.

However, Scott points out that, to his knowledge, no mathematical theory has been able to maintain self-
application and remain consistent. This is another goal of the theory that he is proposing here.

A related problem for a mathematical approach to programming language understanding concern questions of
keeping track of side effects and of storage of commands. Mathematically speaking, what is a store? Well, it’s a
mapping, σ, from information (contents) to locations. That is, it is a function that assigns to each location, l ∈ L
its contents σ(l) ∈ V (the set of values).

σ : L → V

What is a side effect? Well, its a change in state, S. What is a command? Well, it’s a request for a side ef-
fect. Thus, mathematically speaking, a command is the following function

γ : S → S

Can a command be stored? Well, suppose σ is the current state of the store, and suppose l ∈ L is a location at
which the command is stored. Then σ(l) is a command; that is

2



σ(l) : S → S

Hence, σ(l)(σ) is well defined. Or is it? Consider the following:

A store, σ, is a function from locations in the machine to values. Thinking of functions in set theoretic terms,
σ is simply the set of pairs of locations and values (state of the store).

{〈L1, V1〉, 〈L2, V2〉, . . .} (i.e., {〈L1, σ(L1)〉, 〈L2, σ(L2)〉, . . .}

A command, γ, is a function from one state of the store to another

γ(σ) → σ′

If σ is the current state of the store and l is the location where the comand, γ, is stored, then σ(l) = γ. Thus

σ(l)(σ) → σ′

Is this not well defined and self-applicative?

3 Data Types and Mappings

What is a data type? Is it just a set? That is, are objects of the same type if they are both in the same set?
According Scott, that is just too simple,

[T]he objects [of the same type] are structured and bear certain relations to one
another, so the type is something more than a set. (p. 6)

The data types Scott is referring to are structures that are primitive, general structures (as opposed to data
structures) that have to do with a sense of approximation. Consider x, y ∈ D be two elements of the same type, not
only are they different but that one is a better approximation of the other. Say,

x v y

to mean intuitively that y is consistent with x and is (possibly) more accurate than x. For short, x approximates y.
Data types should always be provided with such a relationship.

So, what can we say about this relationship?

Well, we want to assume that it is reflexive, transitive, and antisymmetric, which seems to be an intuitive as-
sumption because it seems clear that x v x, if x v y, y v z, then x v z, and if x v y, then y v/ x. Thus, we have

Axiom 1: A data type is a partially ordered set.

Why only partial? Well, for example for any to objects, x, y, of the data type integer, x v/ y. That is,
no integer is a better approximation of the data tupe integer that any other element of that data type (except ⊥).

If we have two sets, D,D′, with the partial orderings v,v′, respectively and f : D → D′ is a mapping from
one set to the other, then if x, y ∈ D then

3



x v y → f(x) v f(y)

Thus, we have

Axiom 2: Mappings between data types are monotonic. 3

As of now, I’m having a difficult time getting this. So, let’s consider this: Think of the objects in the data type
providing information for some entity. Thus, x v y means that x and y are attempting to approximate the same
entity (i.e., they’re consistent) and that y provides for information about it.

Let’s try the following extremely intuitive example: The entity we are trying to approximate is bachelorhood and let
x = ‘maleness’ and y =’maleness and unmarriedness’. Thus, x v y. They’re consistent and it seems as though y is
a better approxiamation of bachelorhood.

Scott points out, that by looking at data types in this way we must account for incomplete entities, like x in my
example (I suppose it could be argued that y is also incomplete. But let’s assume that it’s not.)

Allowing for partiality of arguments and values has the good
effect that our functions become partial too; for even if the
arguments are perfect the values may only be partial. (p.8)

4 Completeness and Continuity

The theory based on Axioms 1 and 2 would be too abstract. Why? Well, not only is Scott trying to give an abstract
mathematical theory of computation, but he also wants to build a theory that can be translated into a practical
implementation. So. . .

Suppose we have the following infinite sequence

x0 v x1 v . . . v xn v xn+1 v . . .

then we want to suppose that the sequence is tending towards a limit. Call the limit y

y =
⊔∞

n=0 xn

This limit is to be taken as the least upper bound (l.u.b.). We can think of the limit as the union or join of
each of the approximations. Thus,

Axiom 3: A data type is a complete lattice under its partial ordering. 4

They’re complete because since every subset of a data type has a l.u.b. implies the existence of greatest lower
bounds (g.l.b.)

3A monotonic function is an order preserving function.
4A lattice is complete is any of its subsets have both a join (a l.u.b.) and a meet (a g.l.b.)

4



So, let x, y ∈ D. It may be that they are either both approximations of the same ”perfect” entity or not (if so,
then they’re inconsistent). The l.u.b. of {x, y} is denoted by

x t y ∈ D

Notice that that subset’s l.u.b. is inside D (thus D must be infinite). However, not only does every subset of
D have a l.u.b., so does D (denoted by > ∈ D and called the ”top” of the lattice). Again, it is to be thought of as the
union (or join) of all approximations. It is not that which is being approximated, but rather an “over-determined”
element. Thus,

x t y = >

means intuitively that x and y are inconsistent, as opposed to incomparible (dentoed as x v/ y and y v/ x).

The l.u.b. of the empty subset is an element ⊥ ∈ D (called the ”bottom” of the lattice). It is the most ”under-
determined” element of D.

The equation

x u y = ⊥

means that x and y are unconnected, in the sense that there is no ”overlap” of information between them.

Since we have the notion of limit permitted by data types, we must re-think our notion of function.

If a function is computable in some intuitive sense, then getting
out a ”finite” amount of information about one of its values ought
to require putting in only a ”finite” amount of information about
the argument. (p. 10)

Scott claims that we should be able to express this idea in terms of the notions that we have available.

The proper notion of limit is best expressed in terms of directed sets. A subset X ⊆ D is directed if every fi-
nite subset {x0, x1, . . . , xn−1} ⊆ X has an upperbound y ∈ X so that we have

x0 t x1 t . . . t xn−1 v y 5

The limit of the directed set is the l.u.b.,
⊔

X, and suppose that we want a finite amount of information about
it. Each ”bit” of information that we would need is contained in some element of X. Since, X is a directed set, all of
the information about X is in at least one element of X. (Ya, but that element is the join of infinitely many things,
right?)

5Notice that a directed set is alway non-empty

5



Now, consider a function, f : D → D′ and given a limit
⊔

X of a directed subset X ⊆ D, we ask for a
”finite” amount of information about f(

⊔
X). As was just intuitively shown, this would require a ”finite” amount

of information about
⊔

X (i.e., a single element, x ∈ X). Thus, f(x) should give us what we want

f(
⊔

X) =
⊔
{f(x) : x ∈ X}

So, we could say that f preserves the limit and a mapping that preserves all the limits is called continuous.

Axiom 4: Mappings between data types are continuous.

Question: Why does Scott put quotes around the word ’finite’ all of the time?

5 Computability

Again, we are at too high of a level, although some properties of computable functions have been isolated.

The problem is to restrict attention to exactly those data
types where the elements can be approximated by ”finite
configurations” representable in machines, thereby also making
more precise the concept of a ”finite amount of information.”
(p.12)

GOOD! This is what I was wondering about in the last section. Let’s see what he has to say.

Scott’s solution to this problem is to take a topological approach. Any data type satisfying Axioms 1 and 3 can
be regarded as a topological space. To define a topology on a set one needs to say which subsets are open. So, let D
be a data type. A subset U ⊆ D is open if the following two conditions are met:

(U1) whenever x ∈ U and x v y, then y ∈ U

(U2) whenever X ⊆ D is directed and
⊔

X ∈ U , then X ∩ U 6= ∅

Notice that f : D → D′ is continuous in the limit preserving sense iff it is continuous in the topological sense.
(Why?)

If x, y ∈ D, we write

x ≺ y

to mean that y belongs to the topological interior of the upper section determined by x, that is the interior of
the set

{x′ ∈ D : x v x′}

6



There are certain data types where certain elements are isolated. That is, where x ≺ x is true (ex. ⊥ ≺ ⊥ and
> ≺ >).

We write
x 4 y

to mean that the g.l.b. of the topological interior of the upper section determined by x is v y. Thus,

x ≺ y, x 4 y, and x v y

are successively weaker. (What are the differences?!)

We consider the possibility of having a dense subset of a space in terms of which all other elements can be found
as limits, called a basis. A subset E ⊆ D is a basis if it satisfies the following two conditions

(E1) whenever e, e′ ∈ E, then e t e′ ∈ E

(E2) for all x ∈ D we have x =
⊔
{e ∈ E : e ≺ x} 6

Conditions (E1) and (E2) are not strong enough to make data types ”physical.” We need the stronger assumption

Axiom 5: A data type has an effectively given basis.

That is, E must be ”known.” Given e, e′ ∈ E, we have to know how to find the element e t e′ ∈ E. We have to
know how to decide which of the following are true and/or false

e ≺ e′, e 4 e′ and e v e′

This would require that E be, at least, countably infinite and effectively enumerated in terms of which the operations
and relationships from above are recursive. (Is there a bit of circularity here? E must be physically implementable
before we can determine it to be physically implementable. Maybe it’s not circular, only trivia.)

The most important consequence of Axiom 5 is the possibility of defining what it means for for an element, of a
data type, to be computable.

Suppose x ∈ D and E is the basis. Then (relative to this basis) x is computable iff there is an effectively given
sub-sequence

{e′0, e′1, e′2, . . . , e′n, . . .} ⊆ E

such that e′n v e′n+1 for each n, and

x =
⊔∞

n=0 e′n

6If a basis exists, then the meet operation (x u u) is continuous, and not necessarily otherwise.

7



This means that we must be able to give a better and better approximations to x which converge to x in the
limit. This is essential, because the data type may have uncountably many elements, while there can only be count-
ably many computable elements.

6 Construction of Data Types

We must consider now the construction of useful data types satisfying the axioms, remembering that the lattice
structure is the most primitive structure on data types.

Notice that all finite lattices satisfy the axioms and are sufficient for practical application. However, many con-
cepts are understood with infinite structures. Consider the data type, N, for the integers. The elements of the lattice
are 0, 1, 2, 3, . . . , n, . . . and > and ⊥. Notice that elements, other than > and ⊥, are incomparable under v. That is,
none of the elements ”provide more information” than any other element. However,

∀n ∈ N(⊥ v n)

In this case, the entire lattice is its own basis. Why?

Suppose D and D′ are two given data types. There are three particularly important constructs

(D ×D′), (D + D′), and (D → D′)

for obtaining new, ”structured” data types from given ones. Let x ∈ D and x′ ∈ D′

(D ×D′) : 〈x, x′〉 v 〈y, y′〉 iff x v y and x′ v y′

(D + D′) is defined as a ”disjoint” union of D and D′, except that ⊥ = ⊥′ and > = >′

The function space (D → D′) has as elements all the continuous mappings from D into D′, for which we define

f v g iff f(x) v′ g(x) for all x ∈ D

Sums and products can be generalized to more terms and factors, even infinitely many. For example, Dn can be
taken as the set of all n-tuples of elements of partially ordered ?sets? in the obvious coordinate-wise fashion. We
can then set

D? = D0 + D1 + D2 + . . . + Dn + . . .

8



which represents the data type of all finite lists of elements of the given D. Then we could do lists of lists of
lists, . . . Now it would seem reasonable that D∞ can be defined such that

D∞ = D + (D∞)?

that is to say, that each element of D∞ is either an element of D or is a list of other elements of D∞.

Remember that every continuous (even monotonic) function mapping a complete lattice into itself has a fixed
point. Thus, applying this to D∞, for a fixed a ∈ D, the expression 〈a, x〉 defines a continuous function of D∞ into
itself. Consider a fixed point

x = 〈a, x〉

Thus, x is a list whose first term is a and whose second term is . . . the list x itself! Thus x is a kind of in-
finite list

x = 〈a, 〈a, 〈a, . . . 〉〉〉 7

How does this not fit our usual ideas about data types of lists?

One could say that D∞ gives us the topological completion of the space of finite lists (How?), and the various
limit points need not be used if one does not care to take advantage of them (Why?)

A second example of the completion idea concerns function spaces. Let D be given, and set D0 = D and

Dn+1 = (Dn → Dn)

The spaces Dn are a selection of the ”higher-type” spaces of functions of functions of . . . It turns out that
there is a natural way of embedding each Dn successively into the next Dn+1. These embeddings make it possible
to pass to a limit space, D∞ which contains the originally given D and is such that

D∞ = (D∞ → D∞)

This space provides a solution to the self-application problem because each element of D∞ can be regarded as
a (continuous) function on D∞ into D∞. And conversely every continuous function can be represented by an ele-
ment of D∞.

According to Scott, this is the first known, ”mathematically” defined model of λ-calculus. How?
7Consider figure 4 on page 19

9



7 Conclusion

We can now provide an answer to the ”storage-of-commands” problem mentioned above. Let L be the location space
(finite or infinite). The space V of values is to be constructed by the limiting methods from above. Supposing it to
already be constructed, the space, S, of states of the store is defined by

S = (L → V )

The space C of commands is defined by

C = (S → S)

The space P of procedures - with one parameter and side effects - is defined by

P = (V → (S → V × S))

That is, a procedure is a function, which given first a value of its argument and next given a state of the store,
then produces a ”computed” value together with the necessary change of the state of the store.

What can those values be? Well, they might be numbers, locations, lists, commands, or procedures.

Thus,

V = N + R + L + V ? + C + P (i.e., values = integers + reals + locations + lists + commands + procedures)

Such a space V does exist mathematically, and it provides the
values for expressions of a programming language of the kind we have
understood only previously in the ”operational way.” We should at
once begin trying to understand these languages mathematically,
because we now have the tools to do so. (p. 21)

10


